Base Scenario¤
Abstract class for all scenarios.
apebench.BaseScenario
¤
Bases: Module
, ABC
Source code in apebench/_base_scenario.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
|
optim_config
class-attribute
instance-attribute
¤
optim_config: str = (
"adam;10_000;warmup_cosine;0.0;1e-3;2_000"
)
get_ic_generator
¤
get_ic_generator() -> BaseRandomICGenerator
Overwrite for custom initial condition generation.
Uses the ic_config
attribute to determine the type of initial
condition generation.
Allows for the following options:
fourier;CUTOFF;ZERO_MEAN;MAX_ONE
for a truncated Fourier series with CUTOFF (int) number of modes, ZERO_MEAN (bool) for zero mean, and MAX_ONE (bool) for having the initial condition being at max in (-1, 1) but not clamped to itdiffused;INTENSITY;ZERO_MEAN;MAX_ONE
for a diffused noise with INTENSITY (float) for the intensity, ZERO_MEAN (bool) for zero mean, and MAX_ONE (bool) for having the initial condition being at max in (-1, 1) but not clamped to itgrf;POWERLAW_EXPONENT;ZERO_MEAN;MAX_ONE
for a Gaussian random field with POWERLAW_EXPONENT (float) for the powerlaw exponent, ZERO_MEAN (bool) for zero mean, and MAX_ONE (bool) for having the initial condition being at max in (-1, 1) but not clamped to itclamp;LOWER_BOUND;UPPER_BOUND;CONFIG
for clamping the configuration to the range of LOWER_BOUND (float) to UPPER_BOUND (float) and then using the configuration CONFIG for the generation of the initial condition
Source code in apebench/_base_scenario.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
get_ref_stepper
abstractmethod
¤
get_ref_stepper() -> BaseStepper
Produces the reference stepper for the scenario.
Source code in apebench/_base_scenario.py
114 115 116 117 118 119 |
|
get_coarse_stepper
abstractmethod
¤
get_coarse_stepper() -> BaseStepper
Produces the coarse stepper for the scenario.
Source code in apebench/_base_scenario.py
121 122 123 124 125 126 |
|
get_scenario_name
abstractmethod
¤
get_scenario_name() -> str
Produces a unique identifier for this scenario
Source code in apebench/_base_scenario.py
128 129 130 131 132 133 |
|
get_optimizer
¤
get_optimizer() -> optax.GradientTransformation
Returns the optimizer used in the scenario.
Source code in apebench/_base_scenario.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
get_train_ic_set
¤
get_train_ic_set() -> (
Float[
Array, "num_train_samples num_channels *num_points"
]
)
Use the attributes to produce the reference training initial condition set.
Source code in apebench/_base_scenario.py
187 188 189 190 191 192 193 194 195 196 197 |
|
get_train_ic_set_coarse
¤
get_train_ic_set_coarse() -> (
Float[
Array, "num_train_samples num_channels *num_points"
]
)
Use the attributes to produce training initial conditions with the coarse stepper instead.
Source code in apebench/_base_scenario.py
199 200 201 202 203 204 205 206 207 208 209 |
|
get_test_ic_set
¤
get_test_ic_set() -> (
Float[
Array, "num_test_samples num_channels *num_points"
]
)
Use the attributes to produce the reference testing initial condition set.
Source code in apebench/_base_scenario.py
211 212 213 214 215 216 217 218 219 220 221 |
|
get_test_ic_set_coarse
¤
get_test_ic_set_coarse() -> (
Float[
Array, "num_test_samples num_channels *num_points"
]
)
Use the attributes to produce testing initial conditions with the coarse stepper instead.
Source code in apebench/_base_scenario.py
223 224 225 226 227 228 229 230 231 232 233 |
|
produce_data
¤
produce_data(
*,
stepper: BaseStepper,
num_samples: int,
num_warmup_steps: int,
temporal_horizon: int,
key: PRNGKeyArray
) -> Float[
Array,
"num_samples temporal_horizon+1 num_channels *num_points",
]
Default generation of data:
- Instantiate the intial condition distribution
- Generate the number of initial conditions as samples requested and discretize them on the grid
- Warmup the initial conditions if necessary
- Rollout these initial conditions for as many time steps as in the configuration
The returned array has the shape:
(num_train_samples, train_temporal_horizon+1, num_channels,) + (num_points, ) * num_spatial_dims
the last axes are as many (num_points,) axis as there are spatial dimensions.
Source code in apebench/_base_scenario.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
get_train_data
¤
get_train_data() -> Float[
Array,
"num_train_samples train_temporal_horizon+1 num_channels *num_points",
]
Use the attributes to produce the reference training data.
Source code in apebench/_base_scenario.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
get_train_data_coarse
¤
get_train_data_coarse() -> Float[
Array,
"num_train_samples train_temporal_horizon+1 num_channels *num_points",
]
Use the attributes to produce training data with the coarse stepper instead.
Source code in apebench/_base_scenario.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
|
get_test_data
¤
get_test_data() -> Float[
Array,
"num_test_samples test_temporal_horizon+1 num_channels *num_points",
]
Use the attributes to produce the reference testing data.
Source code in apebench/_base_scenario.py
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
get_test_data_coarse
¤
get_test_data_coarse() -> Float[
Array,
"num_test_samples test_temporal_horizon+1 num_channels *num_points",
]
Use the attributes to produce testing data with the coarse stepper instead.
Source code in apebench/_base_scenario.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
get_ref_sample_data
¤
get_ref_sample_data() -> Float[
Array,
"num_trjs_returned test_temporal_horizon+1 num_channels *num_points",
]
Return a subset of the testing data, the number of samples is defined by
the attribute num_trjs_returned
Source code in apebench/_base_scenario.py
350 351 352 353 354 355 356 357 358 359 360 361 |
|
get_callback_fn
¤
get_callback_fn() -> tx.callback.BaseCallback
Parse the callbacks
attribute to a list of callable functions.
Source code in apebench/_base_scenario.py
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
get_trainer
¤
get_trainer(*, train_config: str) -> tx.GeneralTrainer
Expects a str of the defined interface for study. In the default configuration, it could for instance accept:
'sup-03' for supervised rollout trainig with three rollout steps.
Currently, the three major categories are available:
- 'one' for one step supervised training
- 'sup-XX' for supervised training with XX rollout steps
- 'div-XX' for diverted chain training with XX rollout steps
Source code in apebench/_base_scenario.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
get_activation
¤
get_activation(activation: str) -> Callable
Parse a string to a callable activation function.
Source code in apebench/_base_scenario.py
489 490 491 492 493 494 495 496 497 498 |
|
get_network
¤
get_network(
network_config: str, key: PRNGKeyArray
) -> eqx.Module
Parse the network_config
to the corresponding neural architectue and
instantiate it, use the key
to initialize the parameters.
"Conv;34;10;relu" for a feedforward convolutional network with 34 hidden channels, 10 hidden layers, and the ReLU activation function.
Currently, the following constructors are available:
Conv;HIDDEN_CHANNELS;DEPTH;ACTIVATION
: A feedforward convolutional network withDEPTH
hidden layers ofWIDTH
size. Each layer transition except for the last usesACTIVATION
. The effective receptive field isDEPTH + 1
Res;WIDTH;BLOCKS;ACTIVATION
: A classical/legacy ResNet with post-activation and no normalization scheme. Each residual block has two convolutions and operates atWIDTH
channel size. TheACTIVATION
follows each of the convolutions in the residual block. There areBLOCKS
number of residual blocks. Lifting and projection are point-wise linear convolutions (=1x1 convs).UNet;WIDTH;LEVELS;ACTIVATION
: A classical UNet using double convolution blocks with group activation in-between (number of groups is set to one).WIDTH
describes the hidden layer's size on the highest resolution level.LEVELS
indicates the number of times the spatial resolution is halved by a factor of two while the channel count doubles. Skip connections exist between the encoder and decoder part of the network.Dil;DIL-FACTOR;WIDTH;BLOCKS;ACTIVATION
: Similar to the classical post-activation ResNet but uses a series of stacked convolutions of different dilation rates. Each convolution is followed by a group normalization (number of groups is set to one) and theACTIVATION
.DIL-FACTOR
of 1 refers to one convolution of dilation rate 1. If it is set to 2, this refers to three convolutions of rates [1, 2, 1]. If it is 3, then this is [1, 2, 4, 2, 1], etc.FNO;MODES;WIDTH;BLOCKS;ACTIVATION
: A vanilla FNO using spectral convolutions withMODES
equally across all spatial dimensions. Each block operates atWIDTH
channel size and has one spectral convolution with a point-wise linear bypass. The activation is applied to the sum of spectral convolution and bypass result. There areBLOCKS
total blocks. Lifting and projection are point-wise linear (=1x1) convolutions.MLP;WIDTH;DEPTH;ACTIVATION
: A multi-layer perceptron withDEPTH
hidden layers ofWIDTH
size. Each layer transition except for the last usesACTIVATION
. Channel and spatial axes are flattened into one feature axis. Hence, the MLP is hard-coded to one specific resolution.Pure;KERNEL_SIZE
: A purely linear convolution (with no bias) with kernel sizeKERNEL_SIZE
. Use this to learn finite difference stencils. It has as many learnable parameters as the kernel size.MoRes;WIDTH;BLOCKS;ACTIVATION
: A modern ResNet using pre-activation and group normalization. Each residual block has two convolutions and operates atWIDTH
channel size. TheACTIVATION
follows each of the convolutions in the residual block. There areBLOCKS
number of residual blocks. Lifting and projection are point-wise linear convolutions (=1x1 convs).MoUNet;WIDTH;LEVELS;ACTIVATION
: A modern UNet using two resnet blocks per level.WIDTH
describes the hidden layer's size on the highest resolution level.LEVELS
indicates the number of times the spatial resolution is halved by a factor of two while the channel count doubles. Skip connections exist between the encoder and decoder part of the network.
The key
is used to initialize the parameters of the neural network.
To registor your custom architecture use the arch_extensions
dictionary.
Returns:
network
: eqx.Module, the neural architecture
Source code in apebench/_base_scenario.py
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
|
get_neural_stepper
¤
get_neural_stepper(
*,
task_config: str,
network_config: str,
key: PRNGKeyArray
) -> eqx.Module
Use the network_config
to instantiate the neural architecture with
key
for the initial parameters. Then use the task_config
to
determine the wrapper around the neural architecture.
If the task_config
is 'predict', the neural architecture is returned
directly.
If the task_config
is 'correct;XX', the neural architecture is wrapped
in a CorrectedStepper
with XX
as the mode. Supported modes are:
sequential
parallel
sequential_with_bypass
Source code in apebench/_base_scenario.py
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
|
get_parameter_count
¤
get_parameter_count(network_config: str) -> int
Count the number of parameters associated with network_config
str.
Note that this depends on self.num_spatial_dims
, self.num_channels,
and in some cases (so far only the MLP) on
self.num_points`.
Source code in apebench/_base_scenario.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
|
get_receptive_field
¤
get_receptive_field(
*, network_config: str, task_config: str
) -> tuple[tuple[int, int], ...]
Return the receptive field of the neural architecture for the given configuration.
Source code in apebench/_base_scenario.py
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
|
load_model
¤
load_model(
path,
*,
num_seeds: int,
task_config: str,
network_config: str,
remove_singleton_axis: bool = True
) -> eqx.Module
Load the model from the given path.
Source code in apebench/_base_scenario.py
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
|
full_loss
¤
full_loss(model: eqx.Module, *, train_config: str) -> float
Computes the loss of the model on the entire training set in the
configuration denoted by train_config
.
Source code in apebench/_base_scenario.py
689 690 691 692 693 694 695 696 697 698 699 700 701 |
|
perform_test_rollout
¤
perform_test_rollout(
neural_stepper: eqx.Module,
mean_error_fn: Callable = lambda pred, ref: ex.metrics.mean_metric(
ex.metrics.nRMSE, pred, ref
),
) -> Float[Array, test_temporal_horizon]
Rollout the neural stepper starting from the test initial condition and compare it to the reference trajectory.
Source code in apebench/_base_scenario.py
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 |
|
get_metric_fns
¤
get_metric_fns() -> dict[
str,
Callable[
[
Float[
Array,
"num_samples num_channels *num_points",
],
Float[
Array,
"num_samples num_channels *num_points",
],
],
float,
],
]
Return a dictionary with all metric functions according to the
report_metrics
attribute.
Source code in apebench/_base_scenario.py
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 |
|
perform_tests
¤
perform_tests(
neural_stepper: eqx.Module,
*,
remove_singleton_axis: bool = False
) -> dict[str, Float[Array, test_temporal_horizon]]
Computes all metrics according to the report_metrics
attribute.
Source code in apebench/_base_scenario.py
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
|
perform_tests_on_rollout
¤
perform_tests_on_rollout(
neural_rollout: Union[
Float[
Array,
"num_samples test_temporal_horizon num_channels *num_points",
],
Float[
Array,
"num_seeds num_samples test_temporal_horizon num_channels *num_points",
],
],
test_data_no_init: Optional[
Float[
Array,
"num_samples test_temporal_horizon num_channels *num_points",
]
] = None,
) -> Union[
dict[str, Float[Array, test_temporal_horizon]],
dict[
str, Float[Array, "num_seeds test_temporal_horizon"]
],
]
Compute all error metrics of the report_metrics
attribute on an
externally produce rollout.
Tip
Use this function to benchmark external models by producing the
initial states with scenario.get_test_ic_set()
, roll them out in
their respective framework for test_temporal_horizon
steps, and
then call this function on the produced rollout. (Some frameworks
require different array formats, e.g.,
TensorFlow and
Flax are typically channels-last.
Hence, some reshaping might be necessary.)
Warning
The neural_rollout
must not contain the initial conditions as
the zeroth frame.
Arguments:
neural_rollout
: The neural rollout to be tested.test_data_no_init
: The test data without the initial conditions. If not provided, the test data is procedurally generated.
Returns:
results
: A dictionary with the metric names as keys and the error rollouts. The rollout arrays always have a leadingnum_seeds
axis, even if theneural_rollout
did not. This is to ensure compatibility with theperform_tests
function. Certainly, this will be a singleton axis ifneural_rollout
did not have a leading axis.
Source code in apebench/_base_scenario.py
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
|
sample_trjs
¤
sample_trjs(
neural_stepper: eqx.Module,
) -> Float[
Array,
"num_trjs_returned test_temporal_horizon+1 num_channels *num_points",
]
Use the neural_stepper to produce a sample of trajectories. The initial conditions are the ones from the test set.
Source code in apebench/_base_scenario.py
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 |
|
run_raw
¤
run_raw(
*,
task_config: str = "predict",
network_config: str = "Conv;26;10;relu",
train_config: str = "one",
start_seed: int = 0,
num_seeds: int = 1,
remove_singleton_axis: bool = False
)
For more details see the call method.
Use this function if you intend to wrap your run in further vmaps.
Returns:
trained_neural_stepper_s
: eqx.Module, the trained neural stepper for the scenario. Ifnum_seeds
is 1, the singleton dimension along the batch axis is removed (ifremove_singleton_axis
is True).loss_history_s
: Array, the loss history of the training. The shape is(num_seeds, num_training_steps//record_loss_every)
aux_history_s
: Array, the auxiliary history of the training. The shape is(num_seeds, num_training_steps)
metric_trj_s
: dict, the metrics computed on the test set. The keys are the metric names and the values are arrays with the shape(num_seeds, test_temporal_horizon)
sample_rollout_s
: Array, the sample rollouts produced by the trained neural stepper. The shape is(num_seeds, num_trjs_returned, test_temporal_horizon+1, num_channels, *num_points)
seeds
: Array, the seeds used for the run
Source code in apebench/_base_scenario.py
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
|
__call__
¤
__call__(
*,
task_config: str = "predict",
network_config: str = "Conv;34;10;relu",
train_config: str = "one",
start_seed: int = 0,
num_seeds: int = 1,
remove_singleton_axis: bool = True
) -> tuple[pd.DataFrame, eqx.Module]
Execute the scenario with the given attribute configuration and the additional configuration strings.
Arguments:
task_config
: What the trained neural predictor should represent. Can be either 'predict' or 'correct;XX' where XX is the mode of correction.predict
refers to a pure neural architecture. The neural network will fully replace the numerical timestepper. In the case ofcorrect;XX
, the neural network interacts with a coarse stepper. To inference such a system after training, the corresponding coarse solver is needed, but is already baked into the returning module. Default is 'predict'.network_config
: The configuration of the neural network. This begins with a general architecture type, followed by a architecture-dependent length list of parameters. See the methodget_network
for the available architectures and their configuration. Default is 'Conv;34;10;relu' which is a feed-forward convolutional network with 34 hidden channels over 10 hidden layers and the ReLU activation function (about 30k parameters for 1D problems)train_config
: The training configuration. This determines how neural stepper and reference numerical stepper interact during training. See the methodget_trainer
for the available training configurations. Default is 'one' which refers to a one-step supervised approach in which one batch of samples with a length 2 window is sampled across all initial conditions and temporal horizon.start_seed
: The starting seed for the random number generator of network initialization. Default is 0.num_seeds
: The number of seeds to use. Default is 1.remove_singleton_axis
: bool, if True andnum_seeds
is 1, the singleton axis resulting from the seed parallel runs is removed which allows to directly use the returned neural stepper. Otherwise, it must be wrapped in aeqx.filter_vmap(...)
Returns:
result_df
: A dataframe with the results of the scenario. Each row represents one seed. It contains the following columns:- 'scenario': str, the name of the scenario, created by the
method
get_scenario_name
- 'task': str, the task configuration (as given in the argument)
- 'train': str, the training configuration (as given in the argument)
- 'net': str, the network configuration (as given in the argument)
- 'seed': int, the seed used for the run (this varies between the rows if multiple seeds are used at the same time)
- 'mean_nRMSE_XXXX': float, the mean nRMSE metric produced
in an error rollout after the training has finished. Each
temporal entry (staring at 1 all the way to
self.test_temporal_horizon
) is represented by a separate column. METRICS_XXXX
: float, additional metrics (e.g., mean correlation rollout)- 'train_loss_XXXXXX': float, the training loss at each
training step. Each step is represented by a separate column
(starting at 0 all the way to
self.num_training_steps - 1
) - 'aux_XXXXXX': list, the history of auxiliary information produced by callbacks. If there is no callback active, each entry is an empty dictionary.
- 'sample_rollout_XXX': list, a list of lists representing
the sample rollouts produced by the trained neural stepper. The
outer list represents the different initial conditions, the
inner lists represent the different time steps. The length of
the outer list is given by the attribute
num_trjs_returned
. We use list to store (jax.)numpy arrays.
- 'scenario': str, the name of the scenario, created by the
method
trained_neural_stepper_s
: eqx.Module, the trained neural stepper for the scenario. This follows an structure of arrays approach to represent the collection of networks trained based on different initialization seeds. Ifnum_seeds
is 1 (it is only intended to train one network), use theremove_singleton_axis
argument to remove the singleton dimension (True by default).
Note
A typical workflow is to use the functions
apebench.utils.melt_loss
, apebench.utils.melt_metrics
, and
apebench.utils.melt_sample_rollouts
to melt the returned dataframe
into a long format that can be used for plotting with seaborn.
Source code in apebench/_base_scenario.py
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
|