Module phiml.math.extrapolation
Extrapolations are used for padding tensors and sampling coordinates lying outside the tensor bounds. Standard extrapolations are listed as global variables in this module.
Extrapolations are an important part of sampled fields such as grids. See the documentation at https://tum-pbs.github.io/PhiML/Fields.html#extrapolations .
Global variables
var ANTIREFLECT
-
Like REFLECT but extends a grid with the negative value of the corresponding counterpart instead.
var ANTISYMMETRIC
-
Like SYMMETRIC but extends a grid with the negative value of the corresponding counterpart instead.
var NONE
-
Raises AssertionError when used to determine outside values. Padding operations will have no effect with this extrapolation.
var ONE
-
Extrapolates with the constant value 1 (Dirichlet boundary condition).
var PERIODIC
-
Extends a grid by tiling it (Periodic boundary condition).
var REFLECT
-
Like SYMMETRIC but the edge values are not copied and only occur once per seam.
var SYMMETRIC
-
Extends a grid by tiling it. Every other copy of the grid is flipped. Edge values occur twice per seam.
var SYMMETRIC_GRADIENT
-
Extrapolates in a continuous manner. The normal component of the spatial gradient is symmetric at the boundaries. The outer-most valid difference is duplicated.
var ZERO
-
Extrapolates with the constant value 0 (Dirichlet boundary condition).
var ZERO_GRADIENT
-
Extends a grid with its edge values (Neumann boundary condition). The value of a point lying outside the grid is determined by the closest grid value(s).
Functions
def as_extrapolation(obj) ‑> Extrapolation
-
Creates an
Extrapolation
from a descriptor object.Args
obj
-
Extrapolation specification, one of the following:
Extrapolation
- Primitive name as
str
: periodic, zero, one, zero-gradient, symmetric, symmetric-gradient, antisymmetric, reflect, antireflect dict
containing exactly the keys'normal'
and'tangential'
dict
mapping spatial dimension names to extrapolations
Returns
def combine_by_direction(normal: Union[Extrapolation, float, phiml.math._tensors.Tensor], tangential: Union[Extrapolation, float, phiml.math._tensors.Tensor]) ‑> Extrapolation
-
Use a different extrapolation for the normal component of vector-valued tensors.
Args
normal
- Extrapolation for the component that is orthogonal to the boundary.
tangential
- Extrapolation for the component that is tangential to the boundary.
Returns
def combine_sides(boundary_dict: Dict[str, Extrapolation] = None, **extrapolations: Union[Extrapolation, tuple, numbers.Number]) ‑> Extrapolation
-
Specify extrapolations for each side / face of a box.
Args
boundary_dict
- Extrapolations by boundary names.
**extrapolations
- map from dim: str ->
Extrapolation
ortuple
(lower, upper)
Returns
def domain_slice(ext: Extrapolation, item: dict, domain_dims: Union[phiml.math._shape.Shape, tuple, list, str]) ‑> Extrapolation
-
Slices a domain, similar to
ext[item]
but with additional information about the domain. In some cases,ext[item]
will fail, e.g. slicing a normal/tangential extrapolation alongvector
.Args
ext
Extrapolation
item
- slicing dict
domain_dims
- All spatial dimensions.
Returns
def from_dict(dictionary: dict) ‑> Extrapolation
-
Loads an
Extrapolation
object from a dictionary that was created usingExtrapolation.to_dict()
.Args
dictionary
- serializable dictionary holding all extrapolation properties
Returns
Loaded extrapolation
def get_normal(ext: Extrapolation) ‑> Extrapolation
-
Returns only the extrapolation for the surface normal component.
def get_tangential(ext: Extrapolation) ‑> Extrapolation
-
Returns only the extrapolation for components tangential to the boundary surface.
def map(f: Callable[[Extrapolation], Extrapolation], extrapolation)
-
Applies a function to all leaf extrapolations in
extrapolation
. Non-leaves are those created bycombine_sides()
andcombine_by_direction()
.The tree will be collapsed if possible.
Args
f
- Function mapping a leaf
Extrapolation
to anotherExtrapolation
. extrapolation
- Input tree for
f
.
Returns
def order_by_shape(shape: phiml.math._shape.Shape, sequence, default=None) ‑> Union[tuple, list]
-
If sequence is a dict with dimension names as keys, orders its values according to this shape.
Otherwise, the sequence is returned unchanged.
Args
sequence
- Sequence or dict to be ordered
default
- default value used for dimensions not contained in sequence
Returns
ordered sequence of values
def remove_constant_offset(extrapolation)
-
Removes all constant offsets from an extrapolation. This also includes
NaN
values in constants (unlikeext - ext
).Args
extrapolation
Extrapolation
object.
Returns
Extrapolation
that has no constant offsets def where(mask: phiml.math._tensors.Tensor, true_ext, false_ext) ‑> Extrapolation
-
Uses
true_ext
wheremask
is true andfalse_ext
where mask is false. If the extrapolations are not consistent in which boundary faces are uniquely determined, the result cannot be used for boundary faces.You may also call
math.where()
instead of this function.Args
mask
Tensor
with dimensions matching the tensor that is being padded.true_ext
- Extrapolation to use where
mask==True
. false_ext
- Extrapolation to use where
mask==False
.
Returns
Classes
class ConstantExtrapolation (value: Union[float, phiml.math._tensors.Tensor])
-
Extrapolate with a constant value.
Args
pad_rank
- low-ranking extrapolations are handled first during mixed-extrapolation padding. The typical order is periodic=1, boundary=2, symmetric=3, reflect=4, constant=5.
Expand source code
class ConstantExtrapolation(Extrapolation): """ Extrapolate with a constant value. """ def __init__(self, value: Union[Tensor, float]): Extrapolation.__init__(self, 5) self.value = wrap(value) """ Extrapolation value """ assert self.value.dtype.kind in (bool, int, float, complex), f"Numeric value required for constant extrapolation but got '{value}'" @property def shape(self): return self.value.shape def __repr__(self): return repr(self.value) def to_dict(self) -> dict: return {'type': 'constant', 'value': self.value.numpy()} def __value_attrs__(self): return 'value', def __getitem__(self, item): return ConstantExtrapolation(self.value[item]) @staticmethod def __stack__(values: tuple, dim: Shape, **kwargs) -> 'ConstantExtrapolation': if all(isinstance(v, ConstantExtrapolation) for v in values): return ConstantExtrapolation(stack([v.value for v in values], dim, **kwargs)) else: return NotImplemented def spatial_gradient(self): return ZERO def determines_boundary_values(self, boundary_key: Union[Tuple[str, bool], str]) -> bool: return True @property def is_flexible(self) -> bool: return False def pad(self, value: Tensor, widths: dict, already_padded: Optional[dict] = None, **kwargs) -> Tensor: """Pads a tensor using constant values.""" value = value._simplify() if isinstance(value, NativeTensor): pad_value = self._get_pad_value(already_padded) backend = choose_backend(value._native, *pad_value._natives()) for dim in pad_value.shape.non_batch.names: assert dim in value.shape, f"Cannot pad tensor {value.shape} with extrapolation {pad_value.shape} because non-batch dimension '{dim}' is missing." if pad_value.rank == 0: equal_values = math.all_available(self.value, value) and value._native_shape in self.value.shape and (self.value == value).all if not equal_values: required_dims = value._shape.only(tuple(widths.keys())) value = value._cached(required_dims) should_pad_native = any(dim in value._native_shape for dim in widths) and pad_value.shape.volume == 1 if should_pad_native: ordered_pad_widths = order_by_shape(value._native_shape, widths, default=(0, 0)) result_native = backend.pad(value._native, ordered_pad_widths, 'constant', pad_value.native()) else: result_native = value._native if result_native is not NotImplemented: return NativeTensor(result_native, value._native_shape.after_pad(widths), value._shape.after_pad(widths)) return Extrapolation.pad(self, value, widths, already_padded=already_padded, **kwargs) elif isinstance(value, TensorStack): if not value.requires_broadcast: return self.pad(value._contiguous(), widths) inner_widths = {dim: w for dim, w in widths.items() if dim != value._stack_dim.name} tensors = [self[{value._stack_dim.name: i}].pad(t, inner_widths) for i, t in enumerate(value.dimension(value._stack_dim.name))] return TensorStack(tensors, value._stack_dim) else: return Extrapolation.pad(self, value, widths, already_padded=already_padded, **kwargs) def pad_values(self, value: Tensor, width: int, dim: str, upper_edge: bool, already_padded: Optional[dict] = None, **kwargs) -> Tensor: shape = value.shape.after_gather({dim: slice(0, width)}) pad_value = self._get_pad_value(already_padded) return math.expand(pad_value, shape) def _get_pad_value(self, already_padded: Optional[dict]): if get_spatial_derivative_order() == 0: if already_padded: return ZERO.pad(self.value, already_padded) else: return self.value else: return math.wrap(0) def sparse_pad_values(self, value: Tensor, connectivity: Tensor, dim: str, **kwargs) -> Tensor: return math.expand(self.value, dual(connectivity) & non_dual(value)) def __eq__(self, other): return isinstance(other, ConstantExtrapolation) and math.always_close(self.value, other.value, equal_nan=True) def __hash__(self): return hash(self.__class__) def is_zero(self): return self == ZERO def is_one(self): return self == ONE @property def native_grid_sample_mode(self) -> Union[str, None]: return 'zeros' if self.is_zero() else None def __add__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value + other.value) elif self.is_zero(): return other else: return NotImplemented __radd__ = __add__ def __sub__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value - other.value) elif self.is_zero(): return -other else: return NotImplemented def __rsub__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(other.value - self.value) elif self.is_zero(): return other else: return NotImplemented def __mul__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value * other.value) elif self.is_one(): return other elif self.is_zero(): return self else: return NotImplemented __rmul__ = __mul__ def __truediv__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value / other.value) elif self.is_zero(): return self else: return NotImplemented def __rtruediv__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(other.value / self.value) elif self.is_one(): return other else: return NotImplemented def __lt__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value < other.value) else: return NotImplemented def __gt__(self, other): if isinstance(other, ConstantExtrapolation): return ConstantExtrapolation(self.value > other.value) else: return NotImplemented def __abs__(self): return ConstantExtrapolation(abs(self.value)) def __neg__(self): return ConstantExtrapolation(-self.value)
Ancestors
Instance variables
prop native_grid_sample_mode : Optional[str]
-
Expand source code
@property def native_grid_sample_mode(self) -> Union[str, None]: return 'zeros' if self.is_zero() else None
prop shape
-
Expand source code
@property def shape(self): return self.value.shape
var value
-
Extrapolation value
Methods
def is_one(self)
def is_zero(self)
def pad(self, value: phiml.math._tensors.Tensor, widths: dict, already_padded: Optional[dict] = None, **kwargs) ‑> phiml.math._tensors.Tensor
-
Pads a tensor using constant values.
Inherited members
class Extrapolation (pad_rank)
-
Extrapolations are used to determine values of grids or other structures outside the sampled bounds. They play a vital role in padding and sampling.
Args
pad_rank
- low-ranking extrapolations are handled first during mixed-extrapolation padding. The typical order is periodic=1, boundary=2, symmetric=3, reflect=4, constant=5.
Expand source code
class Extrapolation: """ Extrapolations are used to determine values of grids or other structures outside the sampled bounds. They play a vital role in padding and sampling. """ def __init__(self, pad_rank): """ Args: pad_rank: low-ranking extrapolations are handled first during mixed-extrapolation padding. The typical order is periodic=1, boundary=2, symmetric=3, reflect=4, constant=5. """ self.pad_rank = pad_rank @property def shape(self): raise NotImplementedError() def to_dict(self) -> dict: """ Serialize this extrapolation to a dictionary that is serializable (JSON-writable). Use `from_dict()` to restore the Extrapolation object. """ raise NotImplementedError(self.__class__) def spatial_gradient(self) -> 'Extrapolation': """ Returns the extrapolation for the spatial gradient of a tensor/field with this extrapolation. Returns: `Extrapolation` or `NotImplemented` """ raise NotImplementedError(self.__class__) def valid_outer_faces(self, dim) -> Tuple[bool, bool]: """ Use `determines_boundary_values()` instead. `(lower: bool, upper: bool)` indicating whether the values sampled at the outer-most faces of a staggered grid with this extrapolation are valid, i.e. need to be stored and are not redundant. """ return not self.determines_boundary_values(dim+'-'), not self.determines_boundary_values(dim+'+') def determines_boundary_values(self, boundary_key: str) -> bool: """ Tests whether this extrapolation fully determines the values at the boundary faces of the outermost cells or elements. If so, the values need not be stored along with the inside values. Override this function instead of `valid_outer_faces()`. Args: boundary_key: Boundary name as `str`. Returns: Whether the value is fully determined by the boundary and need not be stored elsewhere. """ raise NotImplementedError(self.__class__) @property def is_flexible(self) -> bool: """ Whether the outside values are affected by the inside values. Only `True` if there are actual outside values, i.e. PERIODIC is not flexible. This property is important for pressure solves to determine whether the total divergence is fixed or can be adjusted during the solve. """ raise NotImplementedError(self.__class__) def pad(self, value: Tensor, widths: dict, already_padded: Optional[dict] = None, **kwargs) -> Tensor: """ Pads a tensor using values from `self.pad_values()`. If `value` is a linear tracer, assume pad_values() to produce constant values, independent of `value`. To change this behavior, override this method. Args: value: `Tensor` to be padded widths: `dict` mapping `dim: str -> (lower: int, upper: int)` already_padded: Used when padding a tensor with multiple extrapolations. Contains all widths that have already been padded prior to this call. This causes the shape of `value` to be different from the original tensor passed to `math.pad()`. kwargs: Additional keyword arguments for padding, passed on to `pad_values()`. Returns: Padded `Tensor` """ from ._trace import ShiftLinTracer if isinstance(value, ShiftLinTracer): lower = {dim: -lo for dim, (lo, _) in widths.items()} return value.shift(lower, new_shape=value.shape.after_pad(widths), val_fun=lambda v: ZERO.pad(v, widths, already_padded=already_padded, **kwargs), bias_fun=lambda b: self.pad(b, widths, already_padded=already_padded, **kwargs), nonzero_edge=False) already_padded = {} if already_padded is None else dict(already_padded) for dim, width in widths.items(): assert (w > 0 for w in width), "Negative widths not allowed in Extrapolation.pad(). Use math.pad() instead." values = [] if width[False] > 0: values.append(self.pad_values(value, width[False], dim, False, already_padded=already_padded, **kwargs)) values.append(value) if width[True] > 0: values.append(self.pad_values(value, width[True], dim, True, already_padded=already_padded, **kwargs)) value = concat(values, dim) if dim in already_padded: already_padded[dim] = tuple(i+j for i, j in zip(already_padded[dim], width)) else: already_padded[dim] = width return value def pad_values(self, value: Tensor, width: int, dim: str, upper_edge: bool, already_padded: Optional[dict] = None, **kwargs) -> Tensor: """ Determines the values with which the given tensor would be padded at the specified using this extrapolation. Args: value: `Tensor` to be padded. width: `int > 0`: Number of cells to pad along `dimension`. dim: Dimension name as `str`. upper_edge: `True` for upper edge, `False` for lower edge. already_padded: Used when padding a tensor with multiple extrapolations. Contains all widths that have already been padded prior to this call. This causes the shape of `value` to be different from the original tensor passed to `math.pad()`. Returns: `Tensor` that can be concatenated to `value` along `dimension` """ raise NotImplementedError(self.__class__) def sparse_pad_values(self, value: Tensor, connectivity: Tensor, boundary: str, **kwargs) -> Tensor: """ Determines pad values for boundary nodes of a sparsely connected graph. Args: value: `Tensor` to pad. Dense tensor containing an entry for each non-boundary node of the graph, laid out along a dual dim. connectivity: Sliced graph connectivity as sparse matrix. Only the relevant entries along the primal node dim are given. boundary: Boundary name to pad. **kwargs: Additional provided arguments, such as `mesh`. Returns: Values with which to pad `value`, laid out along the dual dim of `value`. """ raise NotImplementedError(self.__class__) def transform_coordinates(self, coordinates: Tensor, shape: Shape, **kwargs) -> Tensor: """ If `self.is_copy_pad`, transforms outside coordinates to the index from which the value is copied. Otherwise, the grid tensor is assumed to hold the correct boundary values for this extrapolation at the edge. Coordinates are then snapped to the valid index range. This is the default implementation. Args: coordinates: integer coordinates in index space shape: tensor shape Returns: Transformed coordinates """ res = shape[coordinates.shape.get_item_names('vector')] if 'vector' in coordinates.shape and coordinates.shape.get_item_names('vector') else shape.spatial return math.clip(coordinates, 0, math.wrap(res - 1, channel('vector'))) def is_copy_pad(self, dim: str, upper_edge: bool): """:return: True if all pad values are copies of existing values in the tensor to be padded""" return False @property def native_grid_sample_mode(self) -> Union[str, None]: return None def shortest_distance(self, start: Tensor, end: Tensor, domain_size: Tensor): """ Computes the shortest distance between two points. Both points are assumed to lie within the domain Args: start: Start position. end: End position. domain_size: Domain side lengths as vector. Returns: Shortest distance from `start` to `end`. """ return end - start def __getitem__(self, item): return self def _getitem_with_domain(self, item: dict, dim: str, upper_edge: bool, all_dims: Sequence[str]) -> 'Extrapolation': return self[item] def __eq__(self, other): raise NotImplementedError(self.__class__) def __hash__(self): raise NotImplementedError(self.__class__) # must be overridden by all subclasses that implement __eq__ def __ne__(self, other): return not self == other def __abs__(self): raise NotImplementedError(self.__class__) def __neg__(self): raise NotImplementedError(self.__class__) def __add__(self, other): raise NotImplementedError(self.__class__) def __radd__(self, other): raise NotImplementedError(self.__class__) def __sub__(self, other): raise NotImplementedError(self.__class__) def __rsub__(self, other): raise NotImplementedError(self.__class__) def __mul__(self, other): raise NotImplementedError(self.__class__) def __rmul__(self, other): raise NotImplementedError(self.__class__) def __truediv__(self, other): raise NotImplementedError(self.__class__) def __rtruediv__(self, other): raise NotImplementedError(self.__class__)
Subclasses
- ConstantExtrapolation
- Undefined
- phiml.math.extrapolation._ConditionalExtrapolation
- phiml.math.extrapolation._CopyExtrapolation
- phiml.math.extrapolation._MixedExtrapolation
- phiml.math.extrapolation._NoExtrapolation
- phiml.math.extrapolation._NormalTangentialExtrapolation
- phiml.math.extrapolation._SymmetricGradientExtrapolation
Instance variables
prop is_flexible : bool
-
Whether the outside values are affected by the inside values. Only
True
if there are actual outside values, i.e. PERIODIC is not flexible.This property is important for pressure solves to determine whether the total divergence is fixed or can be adjusted during the solve.
Expand source code
@property def is_flexible(self) -> bool: """ Whether the outside values are affected by the inside values. Only `True` if there are actual outside values, i.e. PERIODIC is not flexible. This property is important for pressure solves to determine whether the total divergence is fixed or can be adjusted during the solve. """ raise NotImplementedError(self.__class__)
prop native_grid_sample_mode : Optional[str]
-
Expand source code
@property def native_grid_sample_mode(self) -> Union[str, None]: return None
prop shape
-
Expand source code
@property def shape(self): raise NotImplementedError()
Methods
def determines_boundary_values(self, boundary_key: str) ‑> bool
-
Tests whether this extrapolation fully determines the values at the boundary faces of the outermost cells or elements. If so, the values need not be stored along with the inside values.
Override this function instead of
valid_outer_faces()
.Args
boundary_key
- Boundary name as
str
.
Returns
Whether the value is fully determined by the boundary and need not be stored elsewhere.
def is_copy_pad(self, dim: str, upper_edge: bool)
-
:return: True if all pad values are copies of existing values in the tensor to be padded
def pad(self, value: phiml.math._tensors.Tensor, widths: dict, already_padded: Optional[dict] = None, **kwargs) ‑> phiml.math._tensors.Tensor
-
Pads a tensor using values from
self.pad_values()
.If
value
is a linear tracer, assume pad_values() to produce constant values, independent ofvalue
. To change this behavior, override this method.Args
value
Tensor
to be paddedwidths
dict
mappingdim: str -> (lower: int, upper: int)
already_padded
- Used when padding a tensor with multiple extrapolations.
Contains all widths that have already been padded prior to this call.
This causes the shape of
value
to be different from the original tensor passed tomath.pad()
. kwargs
- Additional keyword arguments for padding, passed on to
pad_values()
.
Returns
Padded
Tensor
def pad_values(self, value: phiml.math._tensors.Tensor, width: int, dim: str, upper_edge: bool, already_padded: Optional[dict] = None, **kwargs) ‑> phiml.math._tensors.Tensor
-
Determines the values with which the given tensor would be padded at the specified using this extrapolation.
Args
value
Tensor
to be padded.width
int > 0
: Number of cells to pad alongdimension
.dim
- Dimension name as
str
. upper_edge
True
for upper edge,False
for lower edge.already_padded
- Used when padding a tensor with multiple extrapolations.
Contains all widths that have already been padded prior to this call.
This causes the shape of
value
to be different from the original tensor passed tomath.pad()
.
Returns
Tensor
that can be concatenated tovalue
alongdimension
def shortest_distance(self, start: phiml.math._tensors.Tensor, end: phiml.math._tensors.Tensor, domain_size: phiml.math._tensors.Tensor)
-
Computes the shortest distance between two points. Both points are assumed to lie within the domain
Args
start
- Start position.
end
- End position.
domain_size
- Domain side lengths as vector.
Returns
Shortest distance from
start
toend
. def sparse_pad_values(self, value: phiml.math._tensors.Tensor, connectivity: phiml.math._tensors.Tensor, boundary: str, **kwargs) ‑> phiml.math._tensors.Tensor
-
Determines pad values for boundary nodes of a sparsely connected graph.
Args
value
Tensor
to pad. Dense tensor containing an entry for each non-boundary node of the graph, laid out along a dual dim.connectivity
- Sliced graph connectivity as sparse matrix. Only the relevant entries along the primal node dim are given.
boundary
- Boundary name to pad.
**kwargs
- Additional provided arguments, such as
mesh
.
Returns
Values with which to pad
value
, laid out along the dual dim ofvalue
. def spatial_gradient(self) ‑> Extrapolation
-
Returns the extrapolation for the spatial gradient of a tensor/field with this extrapolation.
Returns
Extrapolation
orNotImplemented
def to_dict(self) ‑> dict
-
Serialize this extrapolation to a dictionary that is serializable (JSON-writable).
Use
from_dict()
to restore the Extrapolation object. def transform_coordinates(self, coordinates: phiml.math._tensors.Tensor, shape: phiml.math._shape.Shape, **kwargs) ‑> phiml.math._tensors.Tensor
-
If
self.is_copy_pad
, transforms outside coordinates to the index from which the value is copied.Otherwise, the grid tensor is assumed to hold the correct boundary values for this extrapolation at the edge. Coordinates are then snapped to the valid index range. This is the default implementation.
Args
coordinates
- integer coordinates in index space
shape
- tensor shape
Returns
Transformed coordinates
def valid_outer_faces(self, dim) ‑> Tuple[bool, bool]
-
Use
determines_boundary_values()
instead.(lower: bool, upper: bool)
indicating whether the values sampled at the outer-most faces of a staggered grid with this extrapolation are valid, i.e. need to be stored and are not redundant.
class Undefined (derived_from: Extrapolation)
-
The extrapolation is unknown and must be replaced before usage. Any access to outside values will raise an AssertionError.
Args
pad_rank
- low-ranking extrapolations are handled first during mixed-extrapolation padding. The typical order is periodic=1, boundary=2, symmetric=3, reflect=4, constant=5.
Expand source code
class Undefined(Extrapolation): """ The extrapolation is unknown and must be replaced before usage. Any access to outside values will raise an AssertionError. """ def __init__(self, derived_from: Extrapolation): super().__init__(-1) self.derived_from = derived_from @property def shape(self): return EMPTY_SHAPE def to_dict(self) -> dict: return {'type': 'undefined', 'derived_from': self.derived_from.to_dict()} def pad(self, value: Tensor, widths: dict, already_padded: Optional[dict] = None, **kwargs) -> Tensor: for (lo, up) in widths.items(): assert lo == 0 and up == 0, "Undefined extrapolation" return value def spatial_gradient(self) -> 'Extrapolation': return self def determines_boundary_values(self, boundary_key: Union[Tuple[str, bool], str]) -> bool: return self.derived_from.determines_boundary_values(boundary_key) @property def is_flexible(self) -> bool: raise AssertionError("Undefined extrapolation") def pad_values(self, value: Tensor, width: int, dim: str, upper_edge: bool, already_padded: Optional[dict] = None, **kwargs) -> Tensor: raise AssertionError("Undefined extrapolation") def sparse_pad_values(self, value: Tensor, connectivity: Tensor, dim: str, **kwargs) -> Tensor: raise AssertionError("Undefined extrapolation") def __eq__(self, other): return isinstance(other, Undefined) and other.derived_from == self.derived_from def __hash__(self): return hash(self.__class__) + hash(self.derived_from) def __repr__(self): return "undefined" def __abs__(self): return self def __neg__(self): return self def __add__(self, other): return self def __radd__(self, other): return self def __sub__(self, other): return self def __rsub__(self, other): return self def __mul__(self, other): return self def __rmul__(self, other): return self def __truediv__(self, other): return self def __rtruediv__(self, other): return self
Ancestors
Instance variables
prop shape
-
Expand source code
@property def shape(self): return EMPTY_SHAPE
Inherited members