Module phiml.backend.torch.nets

PyTorch implementation of the unified machine learning API. Equivalent functions also exist for the other frameworks.

For API documentation, see phiml.nn.

Expand source code
"""
PyTorch implementation of the unified machine learning API.
Equivalent functions also exist for the other frameworks.

For API documentation, see `phiml.nn`.
"""
from typing import Callable, Union, Sequence

import numpy as np
import torch
import torch.nn as nn
from torch import optim

from . import TORCH
from ._torch_backend import register_module_call
from ... import math


def get_parameters(net: nn.Module, wrap=True) -> dict:
    if not wrap:
        return {name: param for name, param in net.named_parameters()}
    result = {}
    for name, param in net.named_parameters():
        if name.endswith('.weight'):
            order = [
                None,
                'output',
                'input,output',
                'x,input,output',
                'x,y,input,output',
                'x,y,z,input,output'
            ][param.ndim]
            uml_tensor = math.wrap(param, math.channel(order))
        elif name.endswith('.bias'):
            uml_tensor = math.wrap(param, math.channel('output'))
        else:
            raise NotImplementedError
        result[name] = uml_tensor
    return result


def save_state(obj: Union[nn.Module, optim.Optimizer], path: str):
    if not path.endswith('.pth'):
        path += '.pth'
    torch.save(obj.state_dict(), path)


def load_state(obj: Union[nn.Module, optim.Optimizer], path: str):
    if not path.endswith('.pth'):
        path += '.pth'
    obj.load_state_dict(torch.load(path))


def update_weights(net: nn.Module, optimizer: optim.Optimizer, loss_function: Callable, *loss_args, check_nan=False, **loss_kwargs):
    optimizer.zero_grad()
    output = loss_function(*loss_args, **loss_kwargs)
    loss = output[0] if isinstance(output, tuple) else output
    loss.sum.backward()
    if isinstance(optimizer, optim.LBFGS):
        def closure():
            result = loss_function(*loss_args, **loss_kwargs)
            loss_val = result[0] if isinstance(result, tuple) else result
            return loss_val.sum
        optimizer.step(closure=closure)
    else:
        if check_nan:
            for p in net.parameters():
                if not torch.all(torch.isfinite(p.grad)):
                    raise RuntimeError(f"NaN in network gradient detected. Parameter: {p}")
        optimizer.step()
    return output


def adam(net: nn.Module, learning_rate: float = 1e-3, betas=(0.9, 0.999), epsilon=1e-07):
    return optim.Adam(net.parameters(), learning_rate, betas, epsilon)


def sgd(net: nn.Module, learning_rate: float = 1e-3, momentum=0., dampening=0., weight_decay=0., nesterov=False):
    return optim.SGD(net.parameters(), learning_rate, momentum, dampening, weight_decay, nesterov)


def adagrad(net: nn.Module, learning_rate: float = 1e-3, lr_decay=0., weight_decay=0., initial_accumulator_value=0., eps=1e-10):
    return optim.Adagrad(net.parameters(), learning_rate, lr_decay, weight_decay, initial_accumulator_value, eps)


def rmsprop(net: nn.Module, learning_rate: float = 1e-3, alpha=0.99, eps=1e-08, weight_decay=0., momentum=0., centered=False):
    return optim.RMSprop(net.parameters(), learning_rate, alpha, eps, weight_decay, momentum, centered)


def _bias0(conv):
    def initialize(*args, **kwargs):
        module = conv(*args, **kwargs)
        module.bias.data.fill_(0)
        return module
    return initialize


CONV = [None, _bias0(nn.Conv1d), _bias0(nn.Conv2d), _bias0(nn.Conv3d)]
NORM = [None, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
ACTIVATIONS = {'ReLU': nn.ReLU, 'Sigmoid': nn.Sigmoid, 'tanh': nn.Tanh, 'SiLU': nn.SiLU, 'GeLU': nn.GELU}


def mlp(in_channels: int,
              out_channels: int,
              layers: Sequence[int],
              batch_norm=False,
              activation: Union[str, Callable] = 'ReLU',
              softmax=False) -> nn.Module:
    layers = [in_channels, *layers, out_channels]
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = DenseNet(layers, activation, batch_norm, softmax)
    return net.to(TORCH.get_default_device().ref)


class DenseNet(nn.Module):

    def __init__(self,
                 layers: list,
                 activation: type,
                 batch_norm: bool,
                 use_softmax: bool):
        super(DenseNet, self).__init__()
        self._layers = layers
        self._activation = activation
        self._batch_norm = batch_norm
        for i, (s1, s2) in enumerate(zip(layers[:-2], layers[1:-1])):
            self.add_module(f'linear{i}', _bias0(nn.Linear)(s1, s2, bias=True))
            if batch_norm:
                self.add_module(f'norm{i}', nn.BatchNorm1d(s2))
        self.add_module(f'linear_out', _bias0(nn.Linear)(layers[-2], layers[-1], bias=True))
        self.softmax = nn.Softmax() if use_softmax else None

    def forward(self, x):
        register_module_call(self)
        x = TORCH.as_tensor(x)
        for i in range(len(self._layers) - 2):
            x = self._activation()(getattr(self, f'linear{i}')(x))
            if self._batch_norm:
                x = getattr(self, f'norm{i}')(x)
        x = getattr(self, f'linear_out')(x)
        if self.softmax:
            x = self.softmax(x)
        return x


class DenseResNetBlock(nn.Module):

    def __init__(self, layers, batch_norm, activation):
        super(DenseResNetBlock, self).__init__()
        self._layers = layers
        self._activation = activation
        self._batch_norm = batch_norm
        for i, (s1, s2) in enumerate(zip(layers[:-1], layers[1:])):
            self.add_module(f'linear{i}', _bias0(nn.Linear)(s1, s2, bias=True))
            if batch_norm:
                self.add_module(f'norm{i}', nn.BatchNorm1d(s2))

    def forward(self, x):
        x0 = x
        for i in range(len(self._layers) - 1):
            x = self._activation()(getattr(self, f'linear{i}')(x))
            if self._batch_norm:
                x = getattr(self, f'norm{i}')(x)
        return x + x0


def u_net(in_channels: int,
          out_channels: int,
          levels: int = 4,
          filters: Union[int, Sequence] = 16,
          batch_norm: bool = True,
          activation: Union[str, type] = 'ReLU',
          in_spatial: Union[tuple, int] = 2,
          periodic=False,
          use_res_blocks: bool = False,
          down_kernel_size=3,
          up_kernel_size=3) -> nn.Module:
    if isinstance(filters, (tuple, list)):
        assert len(filters) == levels, f"List of filters has length {len(filters)} but u-net has {levels} levels."
    else:
        filters = (filters,) * levels
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    net = UNet(d, in_channels, out_channels, filters, batch_norm, activation, periodic, use_res_blocks, down_kernel_size, up_kernel_size)
    return net.to(TORCH.get_default_device().ref)


class UNet(nn.Module):

    def __init__(self, d: int, in_channels: int, out_channels: int, filters: tuple, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, down_kernel_size: int, up_kernel_size: int):
        super(UNet, self).__init__()
        self._levels = len(filters)
        self._spatial_rank = d
        if use_res_blocks:
            self.add_module('inc', ResNetBlock(d, in_channels, filters[0], batch_norm, activation, periodic, down_kernel_size))
        else:
            self.add_module('inc', DoubleConv(d, in_channels, filters[0], filters[0], batch_norm, activation, periodic, down_kernel_size))
        for i in range(1, self._levels):
            self.add_module(f'down{i}', Down(d, filters[i - 1], filters[i], batch_norm, activation, periodic, use_res_blocks, down_kernel_size))
            self.add_module(f'up{i}', Up(d, filters[i] + filters[i - 1], filters[i - 1], batch_norm, activation, periodic, use_res_blocks, up_kernel_size))
        self.add_module('outc', CONV[d](filters[0], out_channels, kernel_size=1))

    def forward(self, x):
        register_module_call(self)
        x = TORCH.as_tensor(x)
        x = self.inc(x)
        xs = [x]
        for i in range(1, self._levels):
            x = getattr(self, f'down{i}')(x)
            xs.insert(0, x)
        for i in range(1, self._levels):
            x = getattr(self, f'up{i}')(x, xs[i])
        x = self.outc(x)
        return x


class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, d: int, in_channels: int, out_channels: int, mid_channels: int, batch_norm: bool, activation: type, periodic: bool, kernel_size=3):
        super().__init__()
        self.add_module('double_conv', nn.Sequential(
            CONV[d](in_channels, mid_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[d](mid_channels) if batch_norm else nn.Identity(),
            activation(),
            CONV[d](mid_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[d](out_channels) if batch_norm else nn.Identity(),
            nn.ReLU(inplace=True)
        ))

    def forward(self, x):
        return self.double_conv(x)


MAX_POOL = [None, nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d]


class Down(nn.Module):
    """Downscaling with maxpool then double conv or resnet_block"""

    def __init__(self, d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: Union[str, type], use_res_blocks: bool, periodic, kernel_size: int):
        super().__init__()
        self.add_module('maxpool', MAX_POOL[d](2))
        if use_res_blocks:
            self.add_module('conv', ResNetBlock(d, in_channels, out_channels, batch_norm, activation, periodic, kernel_size))
        else:
            self.add_module('conv', DoubleConv(d, in_channels, out_channels, out_channels, batch_norm, activation, periodic, kernel_size))

    def forward(self, x):
        x = self.maxpool(x)
        return self.conv(x)


class Up(nn.Module):
    """Upscaling then double conv"""

    _MODES = [None, 'linear', 'bilinear', 'trilinear']

    def __init__(self, d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, kernel_size: int):
        super().__init__()
        up = nn.Upsample(scale_factor=2, mode=Up._MODES[d])
        if use_res_blocks:
            conv = ResNetBlock(d, in_channels, out_channels, batch_norm, activation, periodic, kernel_size)
        else:
            conv = DoubleConv(d, in_channels, out_channels, in_channels // 2, batch_norm, activation, periodic, kernel_size)
        self.add_module('up', up)
        self.add_module('conv', conv)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        # diff = [x2.size()[i] - x1.size()[i] for i in range(2, len(x1.shape))]
        # x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
        #                 diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)


class ConvNet(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool):
        super(ConvNet, self).__init__()
        activation = ACTIVATIONS[activation]
        if len(layers) < 1:
            layers.append(out_channels)
        self.layers = layers
        self.add_module(f'Conv_in', nn.Sequential(
            CONV[in_spatial](in_channels, layers[0], kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[in_spatial](layers[0]) if batch_norm else nn.Identity(),
            activation()))
        for i in range(1, len(layers)):
            self.add_module(f'Conv{i}', nn.Sequential(
                CONV[in_spatial](layers[i - 1], layers[i], kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'),
                NORM[in_spatial](layers[i]) if batch_norm else nn.Identity(),
                activation()))
        self.add_module(f'Conv_out', CONV[in_spatial](layers[len(layers) - 1], out_channels, kernel_size=1))

    def forward(self, x):
        x = getattr(self, f'Conv_in')(x)
        for i in range(1, len(self.layers)):
            x = getattr(self, f'Conv{i}')(x)
        x = getattr(self, f'Conv_out')(x)
        return x


def conv_net(in_channels: int,
             out_channels: int,
             layers: Sequence[int],
             batch_norm: bool = False,
             activation: Union[str, type] = 'ReLU',
             in_spatial: Union[int, tuple] = 2,
             periodic=False) -> nn.Module:
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    net = ConvNet(d, in_channels, out_channels, layers, batch_norm, activation, periodic)
    net = net.to(TORCH.get_default_device().ref)
    return net


class ResNetBlock(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, batch_norm, activation, periodic: bool, kernel_size=3):
        # Since in_channels and out_channels might be different, we need a sampling layer for up/down sampling input in order to add it as a skip connection
        super(ResNetBlock, self).__init__()
        if in_channels != out_channels:
            self.sample_input = CONV[in_spatial](in_channels, out_channels, kernel_size=1, padding=0)
            self.bn_sample = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        else:
            self.sample_input = nn.Identity()
            self.bn_sample = nn.Identity()
        self.activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
        self.bn1 = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        self.conv1 = CONV[in_spatial](in_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros')
        self.bn2 = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        self.conv2 = CONV[in_spatial](out_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros')

    def forward(self, x):
        x = TORCH.as_tensor(x)
        out = self.activation()(self.bn1(self.conv1(x)))
        out = self.activation()(self.bn2(self.conv2(out)))
        out = (out + self.bn_sample(self.sample_input(x)))
        return out


def get_mask(inputs, reverse_mask, data_format='NHWC'):
    """ Compute mask for slicing input feature map for Invertible Nets """
    shape = inputs.shape
    if len(shape) == 2:
        N = shape[-1]
        range_n = torch.arange(0, N)
        even_ind = range_n % 2
        checker = torch.reshape(even_ind, (-1, N))
    elif len(shape) == 4:
        H = shape[2] if data_format == 'NCHW' else shape[1]
        W = shape[3] if data_format == 'NCHW' else shape[2]
        range_h = torch.arange(0, H)
        range_w = torch.arange(0, W)
        even_ind_h = range_h % 2
        even_ind_w = range_w % 2
        ind_h = even_ind_h.unsqueeze(-1).repeat(1, W)
        ind_w = even_ind_w.unsqueeze(0).repeat(H, 1)
        checker = torch.logical_xor(ind_h, ind_w)
        checker = checker.reshape(1, 1, H, W) if data_format == 'NCHW' else checker.reshape(1, H, W, 1)
        checker = checker.long()
    else:
        raise ValueError('Invalid tensor shape. Dimension of the tensor shape must be 2 (NxD) or 4 (NxCxHxW or NxHxWxC), got {}.'.format(inputs.get_shape().as_list()))
    if reverse_mask:
        checker = 1 - checker
    return checker.to(TORCH.get_default_device().ref)


class ResNet(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool):
        super(ResNet, self).__init__()
        self.layers = layers
        if len(self.layers) < 1:
            layers.append(out_channels)
        self.add_module('Res_in', ResNetBlock(in_spatial, in_channels, layers[0], batch_norm, activation, periodic))
        for i in range(1, len(layers)):
            self.add_module(f'Res{i}', ResNetBlock(in_spatial, layers[i - 1], layers[i], batch_norm, activation, periodic))
        self.add_module('Res_out', CONV[in_spatial](layers[len(layers) - 1], out_channels, kernel_size=1))

    def forward(self, x):
        x = TORCH.as_tensor(x)
        x = getattr(self, 'Res_in')(x)
        for i in range(1, len(self.layers)):
            x = getattr(self, f'Res{i}')(x)
        x = getattr(self, 'Res_out')(x)
        return x


def res_net(in_channels: int,
            out_channels: int,
            layers: Sequence[int],
            batch_norm: bool = False,
            activation: Union[str, type] = 'ReLU',
            in_spatial: Union[int, tuple] = 2,
            periodic=False) -> nn.Module:
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = ResNet(d, in_channels, out_channels, layers, batch_norm, activation, periodic)
    net = net.to(TORCH.get_default_device().ref)
    return net


def conv_classifier(in_features: int,
                    in_spatial: Union[tuple, list],
                    num_classes: int,
                    blocks=(64, 128, 256, 256, 512, 512),
                    block_sizes=(2, 2, 3, 3, 3),
                    dense_layers=(4096, 4096, 100),
                    batch_norm=True,
                    activation='ReLU',
                    softmax=True,
                    periodic=False):
    assert isinstance(in_spatial, (tuple, list))
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = ConvClassifier(in_features, in_spatial, num_classes, batch_norm, softmax, blocks, block_sizes, dense_layers, periodic, activation)
    return net.to(TORCH.get_default_device().ref)


class ConvClassifier(nn.Module):

    def __init__(self, in_features, in_spatial: list, num_classes: int, batch_norm: bool, use_softmax: bool, blocks: tuple, block_sizes: tuple, dense_layers: tuple, periodic: bool, activation):
        super(ConvClassifier, self).__init__()
        d = len(in_spatial)
        self.in_spatial = in_spatial
        self._blocks = blocks
        self.add_module('maxpool', MAX_POOL[d](2))
        for i, (prev, next) in enumerate(zip((in_features,) + tuple(blocks[:-1]), blocks)):
            block_size = block_sizes[i]
            layers = []
            for j in range(block_size):
                layers.append(CONV[d](prev if j == 0 else next, next, kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'))
                layers.append(NORM[d](next) if batch_norm else nn.Identity())
                layers.append(activation())
            self.add_module(f'conv{i+1}', nn.Sequential(*layers))
        flat_size = int(np.prod(in_spatial) * blocks[-1] / (2**d) ** len(blocks))
        self.mlp = mlp(flat_size, num_classes, dense_layers, batch_norm, activation, use_softmax)
        self.flatten = nn.Flatten()

    def forward(self, x):
        for i in range(len(self._blocks)):
            x = getattr(self, f'conv{i+1}')(x)
            x = self.maxpool(x)
        x = self.flatten(x)
        x = self.mlp(x)
        return x


NET = {'u_net': u_net, 'res_net': res_net, 'conv_net': conv_net}


class CouplingLayer(nn.Module):

    def __init__(self, construct_net: Callable, construction_kwargs: dict, reverse_mask):
        super(CouplingLayer, self).__init__()
        self.reverse_mask = reverse_mask
        self.s1 = construct_net(**construction_kwargs)
        self.t1 = construct_net(**construction_kwargs)
        self.s2 = construct_net(**construction_kwargs)
        self.t2 = construct_net(**construction_kwargs)

    def forward(self, x, invert=False):
        x = TORCH.as_tensor(x)
        mask = get_mask(x, self.reverse_mask, 'NCHW')
        if invert:
            v1 = x * mask
            v2 = x * (1 - mask)
            u2 = (1 - mask) * (v2 - self.t1(v1)) * torch.exp(-self.s1(v1))
            u1 = mask * (v1 - self.t2(u2)) * torch.exp(-self.s2(u2))
            return u1 + u2
        else:
            u1 = x * mask
            u2 = x * (1 - mask)
            v1 = mask * (u1 * torch.exp(self.s2(u2)) + self.t2(u2))
            v2 = (1 - mask) * (u2 * torch.exp(self.s1(v1)) + self.t1(v1))
            return v1 + v2


class InvertibleNet(nn.Module):
    def __init__(self, num_blocks: int, construct_net, construction_kwargs: dict):
        super(InvertibleNet, self).__init__()
        self.num_blocks = num_blocks
        for i in range(num_blocks):
            self.add_module(f'coupling_block{i + 1}', CouplingLayer(construct_net, construction_kwargs, (i % 2 == 0)))

    def forward(self, x, backward=False):
        if backward:
            for i in range(self.num_blocks, 0, -1):
                x = getattr(self, f'coupling_block{i}')(x, backward)
        else:
            for i in range(1, self.num_blocks + 1):
                x = getattr(self, f'coupling_block{i}')(x, backward)
        return x


def invertible_net(num_blocks: int,
                   construct_net: Union[str, Callable],
                   **construct_kwargs):  # mlp, u_net, res_net, conv_net
    if construct_net == 'mlp':
        def construct_net(in_channels: int, layers: Sequence[int], batch_norm=False, activation='ReLU', softmax=False, out_channels: int = None):
            assert not softmax, "Softmax not supported inside invertible net"
            assert out_channels is None or out_channels == in_channels, "out_channels must match in_channels or be unspecified"
            activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
            layers = [in_channels, *layers, in_channels]
            return DenseResNetBlock(layers, batch_norm=batch_norm, activation=activation)
    if isinstance(construct_net, str):
        construct_net = globals()[construct_net]
    if 'in_channels' in construct_kwargs and 'out_channels' not in construct_kwargs:
        construct_kwargs['out_channels'] = construct_kwargs['in_channels']
    return InvertibleNet(num_blocks, construct_net, construct_kwargs).to(TORCH.get_default_device().ref)


def coupling_layer(in_channels: int,
                   activation: Union[str, type] = 'ReLU',
                   batch_norm=False,
                   reverse_mask=False,
                   in_spatial: Union[tuple, int] = 2):
    if isinstance(in_spatial, tuple):
        in_spatial = len(in_spatial)
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = CouplingLayer(in_channels, activation, batch_norm, in_spatial, reverse_mask)
    net = net.to(TORCH.get_default_device().ref)
    return net


# class SpectralConv(nn.Module):
#
#     def __init__(self, in_channels, out_channels, modes, in_spatial):
#         super(SpectralConv, self).__init__()
#         self.in_channels = in_channels
#         self.out_channels = out_channels
#         self.in_spatial = in_spatial
#         assert in_spatial >= 1 and in_spatial <= 3
#         if isinstance(modes, int):
#             mode = modes
#             modes = [mode for i in range(in_spatial)]
#         self.scale = 1 / (in_channels * out_channels)
#         self.modes = {i + 1: modes[i] for i in range(len(modes))}
#         self.weights = {}
#         rand_shape = [in_channels, out_channels]
#         rand_shape += [self.modes[i] for i in range(1, in_spatial + 1)]
#         for i in range(2 ** (in_spatial - 1)):
#             self.weights[f'w{i + 1}'] = nn.Parameter(self.scale * torch.randn(rand_shape, dtype=torch.cfloat))
#
#     def complex_mul(self, input, weights):
#         if self.in_spatial == 1:
#             return torch.einsum("bix,iox->box", input, weights)
#         elif self.in_spatial == 2:
#             return torch.einsum("bixy,ioxy->boxy", input, weights)
#         elif self.in_spatial == 3:
#             return torch.einsum("bixyz,ioxyz->boxyz", input, weights)
#
#     def forward(self, x):
#         batch_size = x.shape[0]
#         # --- Convert to Fourier space ---
#         dims = [-i for i in range(self.in_spatial, 0, -1)]
#         x_ft = torch.fft.rfftn(x, dim=dims)
#         outft_dims = [batch_size, self.out_channels] + [x.size(-i) for i in range(self.in_spatial, 1, -1)] + [x.size(-1) // 2 + 1]
#         out_ft = torch.zeros(outft_dims, dtype=torch.cfloat, device=x.device)
#         # --- Multiply relevant fourier modes ---
#         if self.in_spatial == 1:
#             out_ft[:, :, :self.modes[1]] = self.complex_mul(x_ft[:, :, :self.modes[1]], self.weights['w1'].to(x_ft.device))
#         elif self.in_spatial == 2:
#             out_ft[:, :, :self.modes[1], :self.modes[2]] = self.complex_mul(x_ft[:, :, :self.modes[1], :self.modes[2]], self.weights['w1'].to(x_ft.device))
#             out_ft[:, :, -self.modes[1]:, :self.modes[2]] = self.complex_mul(x_ft[:, :, -self.modes[1]:, :self.modes[2]], self.weights['w2'].to(x_ft.device))
#         elif self.in_spatial == 3:
#             out_ft[:, :, :self.modes[1], :self.modes[2], :self.modes[3]] = self.complex_mul(x_ft[:, :, :self.modes[1], :self.modes[2], :self.modes[3]], self.weights['w1'].to(x_ft.device))
#             out_ft[:, :, -self.modes[1]:, :self.modes[2], :self.modes[3]] = self.complex_mul(x_ft[:, :, -self.modes[1]:, :self.modes[2], :self.modes[3]], self.weights['w2'].to(x_ft.device))
#             out_ft[:, :, :self.modes[1], -self.modes[2]:, :self.modes[3]] = self.complex_mul(x_ft[:, :, :self.modes[1], -self.modes[2]:, :self.modes[3]], self.weights['w3'].to(x_ft.device))
#             out_ft[:, :, -self.modes[1]:, -self.modes[2]:, :self.modes[3]] = self.complex_mul(x_ft[:, :, -self.modes[1]:, -self.modes[2]:, :self.modes[3]], self.weights['w4'].to(x_ft.device))
#         # --- Return to Physical Space ---
#         x = torch.fft.irfftn(out_ft, s=[x.size(-i) for i in range(self.in_spatial, 0, -1)])
#         return x
#
#
# class FNO(nn.Module):
#     """
#     Fourier Neural Operators
#     source: https://github.com/zongyi-li/fourier_neural_operator
#
#     The overall network contains 4 layers of the ["Fourier layer"](https://github.com/zongyi-li/fourier_neural_operator).
#     1. Lift the input to the desire channel dimension by self.fc0 .
#     2. 4 layers of the integral operators u' = (W + K)(u).
#         W defined by self.w; K defined by self.conv .
#     3. Project from the channel space to the output space by self.fc1 and self.fc2.
#
#     input shape and output shape: (batchsize b, channels c, *spatial)
#     """
#
#     def __init__(self, in_channels, out_channels, width, modes, activation, batch_norm, in_spatial):
#         super(FNO, self).__init__()
#         self.activation = activation
#         self.width = width
#         self.in_spatial = in_spatial
#         self.fc0 = _bias0(nn.Linear)(in_channels + in_spatial, self.width)
#         for i in range(4):
#             self.add_module(f'conv{i}', SpectralConv(self.width, self.width, modes, in_spatial))
#             self.add_module(f'w{i}', CONV[in_spatial](self.width, self.width, kernel_size=1))
#             self.add_module(f'bn{i}', NORM[in_spatial](self.width) if batch_norm else nn.Identity())
#         self.fc1 = _bias0(nn.Linear)(self.width, 128)
#         self.fc2 = _bias0(nn.Linear)(128, out_channels)
#
#     # Adding extra spatial channels eg. x, y, z, .... to input x
#     def get_grid(self, shape, device):
#         batch_size = shape[0]
#         grid_channel_sizes = shape[2:]  # shape =  (batch_size, channels, *spatial)
#         self.grid_channels = {}
#         for i in range(self.in_spatial):
#             self.grid_channels[f'dim{i}'] = torch.tensor(torch.linspace(0, 1, grid_channel_sizes[i]), dtype=torch.float)
#             reshape_dim_tuple = [1, 1] + [1 if i != j else grid_channel_sizes[j] for j in range(self.in_spatial)]
#             repeat_dim_tuple = [batch_size, 1] + [1 if i == j else grid_channel_sizes[j] for j in range(self.in_spatial)]
#             self.grid_channels[f'dim{i}'] = self.grid_channels[f'dim{i}'].reshape(reshape_dim_tuple).repeat(repeat_dim_tuple)
#         return torch.cat([self.grid_channels[f'dim{i}'] for i in range(self.in_spatial)], dim=1).to(device)
#
#     def forward(self, x):
#         grid = self.get_grid(x.shape, x.device)
#         x = torch.cat([x, grid], dim=1)
#         permute_tuple = [0] + [2 + i for i in range(self.in_spatial)] + [1]
#         permute_tuple_reverse = [0] + [self.in_spatial + 1] + [i + 1 for i in range(self.in_spatial)]
#         # Transpose x such that channels shape lies at the end to pass it through linear layers
#         x = x.permute(permute_tuple)
#         x = self.fc0(x)
#         # Transpose x back to its original shape to pass it through convolutional layers
#         x = x.permute(permute_tuple_reverse)
#         for i in range(4):
#             x1 = getattr(self, f'w{i}')(x)
#             x2 = getattr(self, f'conv{i}')(x)
#             x = getattr(self, f'bn{i}')(x1) + getattr(self, f'bn{i}')(x2)
#             x = self.activation()(x)
#         x = x.permute(permute_tuple)
#         x = self.activation()(self.fc1(x))
#         x = self.fc2(x)
#         x = x.permute(permute_tuple_reverse)
#         return x
#
#
# def fno(in_channels: int,
#         out_channels: int,
#         mid_channels: int,
#         modes: Sequence[int],
#         activation: Union[str, type] = 'ReLU',
#         batch_norm: bool = False,
#         in_spatial: int = 2):
#     activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
#     net = FNO(in_channels, out_channels, mid_channels, modes, activation, batch_norm, in_spatial)
#     net = net.to(TORCH.get_default_device().ref)
#     return net

Functions

def adagrad(net: torch.nn.modules.module.Module, learning_rate: float = 0.001, lr_decay=0.0, weight_decay=0.0, initial_accumulator_value=0.0, eps=1e-10)
Expand source code
def adagrad(net: nn.Module, learning_rate: float = 1e-3, lr_decay=0., weight_decay=0., initial_accumulator_value=0., eps=1e-10):
    return optim.Adagrad(net.parameters(), learning_rate, lr_decay, weight_decay, initial_accumulator_value, eps)
def adam(net: torch.nn.modules.module.Module, learning_rate: float = 0.001, betas=(0.9, 0.999), epsilon=1e-07)
Expand source code
def adam(net: nn.Module, learning_rate: float = 1e-3, betas=(0.9, 0.999), epsilon=1e-07):
    return optim.Adam(net.parameters(), learning_rate, betas, epsilon)
def conv_classifier(in_features: int, in_spatial: Union[tuple, list], num_classes: int, blocks=(64, 128, 256, 256, 512, 512), block_sizes=(2, 2, 3, 3, 3), dense_layers=(4096, 4096, 100), batch_norm=True, activation='ReLU', softmax=True, periodic=False)
Expand source code
def conv_classifier(in_features: int,
                    in_spatial: Union[tuple, list],
                    num_classes: int,
                    blocks=(64, 128, 256, 256, 512, 512),
                    block_sizes=(2, 2, 3, 3, 3),
                    dense_layers=(4096, 4096, 100),
                    batch_norm=True,
                    activation='ReLU',
                    softmax=True,
                    periodic=False):
    assert isinstance(in_spatial, (tuple, list))
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = ConvClassifier(in_features, in_spatial, num_classes, batch_norm, softmax, blocks, block_sizes, dense_layers, periodic, activation)
    return net.to(TORCH.get_default_device().ref)
def conv_net(in_channels: int, out_channels: int, layers: Sequence[int], batch_norm: bool = False, activation: Union[str, type] = 'ReLU', in_spatial: Union[int, tuple] = 2, periodic=False) ‑> torch.nn.modules.module.Module
Expand source code
def conv_net(in_channels: int,
             out_channels: int,
             layers: Sequence[int],
             batch_norm: bool = False,
             activation: Union[str, type] = 'ReLU',
             in_spatial: Union[int, tuple] = 2,
             periodic=False) -> nn.Module:
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    net = ConvNet(d, in_channels, out_channels, layers, batch_norm, activation, periodic)
    net = net.to(TORCH.get_default_device().ref)
    return net
def coupling_layer(in_channels: int, activation: Union[str, type] = 'ReLU', batch_norm=False, reverse_mask=False, in_spatial: Union[int, tuple] = 2)
Expand source code
def coupling_layer(in_channels: int,
                   activation: Union[str, type] = 'ReLU',
                   batch_norm=False,
                   reverse_mask=False,
                   in_spatial: Union[tuple, int] = 2):
    if isinstance(in_spatial, tuple):
        in_spatial = len(in_spatial)
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = CouplingLayer(in_channels, activation, batch_norm, in_spatial, reverse_mask)
    net = net.to(TORCH.get_default_device().ref)
    return net
def get_mask(inputs, reverse_mask, data_format='NHWC')

Compute mask for slicing input feature map for Invertible Nets

Expand source code
def get_mask(inputs, reverse_mask, data_format='NHWC'):
    """ Compute mask for slicing input feature map for Invertible Nets """
    shape = inputs.shape
    if len(shape) == 2:
        N = shape[-1]
        range_n = torch.arange(0, N)
        even_ind = range_n % 2
        checker = torch.reshape(even_ind, (-1, N))
    elif len(shape) == 4:
        H = shape[2] if data_format == 'NCHW' else shape[1]
        W = shape[3] if data_format == 'NCHW' else shape[2]
        range_h = torch.arange(0, H)
        range_w = torch.arange(0, W)
        even_ind_h = range_h % 2
        even_ind_w = range_w % 2
        ind_h = even_ind_h.unsqueeze(-1).repeat(1, W)
        ind_w = even_ind_w.unsqueeze(0).repeat(H, 1)
        checker = torch.logical_xor(ind_h, ind_w)
        checker = checker.reshape(1, 1, H, W) if data_format == 'NCHW' else checker.reshape(1, H, W, 1)
        checker = checker.long()
    else:
        raise ValueError('Invalid tensor shape. Dimension of the tensor shape must be 2 (NxD) or 4 (NxCxHxW or NxHxWxC), got {}.'.format(inputs.get_shape().as_list()))
    if reverse_mask:
        checker = 1 - checker
    return checker.to(TORCH.get_default_device().ref)
def get_parameters(net: torch.nn.modules.module.Module, wrap=True) ‑> dict
Expand source code
def get_parameters(net: nn.Module, wrap=True) -> dict:
    if not wrap:
        return {name: param for name, param in net.named_parameters()}
    result = {}
    for name, param in net.named_parameters():
        if name.endswith('.weight'):
            order = [
                None,
                'output',
                'input,output',
                'x,input,output',
                'x,y,input,output',
                'x,y,z,input,output'
            ][param.ndim]
            uml_tensor = math.wrap(param, math.channel(order))
        elif name.endswith('.bias'):
            uml_tensor = math.wrap(param, math.channel('output'))
        else:
            raise NotImplementedError
        result[name] = uml_tensor
    return result
def invertible_net(num_blocks: int, construct_net: Union[str, Callable], **construct_kwargs)
Expand source code
def invertible_net(num_blocks: int,
                   construct_net: Union[str, Callable],
                   **construct_kwargs):  # mlp, u_net, res_net, conv_net
    if construct_net == 'mlp':
        def construct_net(in_channels: int, layers: Sequence[int], batch_norm=False, activation='ReLU', softmax=False, out_channels: int = None):
            assert not softmax, "Softmax not supported inside invertible net"
            assert out_channels is None or out_channels == in_channels, "out_channels must match in_channels or be unspecified"
            activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
            layers = [in_channels, *layers, in_channels]
            return DenseResNetBlock(layers, batch_norm=batch_norm, activation=activation)
    if isinstance(construct_net, str):
        construct_net = globals()[construct_net]
    if 'in_channels' in construct_kwargs and 'out_channels' not in construct_kwargs:
        construct_kwargs['out_channels'] = construct_kwargs['in_channels']
    return InvertibleNet(num_blocks, construct_net, construct_kwargs).to(TORCH.get_default_device().ref)
def load_state(obj: Union[torch.nn.modules.module.Module, torch.optim.optimizer.Optimizer], path: str)
Expand source code
def load_state(obj: Union[nn.Module, optim.Optimizer], path: str):
    if not path.endswith('.pth'):
        path += '.pth'
    obj.load_state_dict(torch.load(path))
def mlp(in_channels: int, out_channels: int, layers: Sequence[int], batch_norm=False, activation: Union[str, Callable] = 'ReLU', softmax=False) ‑> torch.nn.modules.module.Module
Expand source code
def mlp(in_channels: int,
              out_channels: int,
              layers: Sequence[int],
              batch_norm=False,
              activation: Union[str, Callable] = 'ReLU',
              softmax=False) -> nn.Module:
    layers = [in_channels, *layers, out_channels]
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = DenseNet(layers, activation, batch_norm, softmax)
    return net.to(TORCH.get_default_device().ref)
def res_net(in_channels: int, out_channels: int, layers: Sequence[int], batch_norm: bool = False, activation: Union[str, type] = 'ReLU', in_spatial: Union[int, tuple] = 2, periodic=False) ‑> torch.nn.modules.module.Module
Expand source code
def res_net(in_channels: int,
            out_channels: int,
            layers: Sequence[int],
            batch_norm: bool = False,
            activation: Union[str, type] = 'ReLU',
            in_spatial: Union[int, tuple] = 2,
            periodic=False) -> nn.Module:
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    net = ResNet(d, in_channels, out_channels, layers, batch_norm, activation, periodic)
    net = net.to(TORCH.get_default_device().ref)
    return net
def rmsprop(net: torch.nn.modules.module.Module, learning_rate: float = 0.001, alpha=0.99, eps=1e-08, weight_decay=0.0, momentum=0.0, centered=False)
Expand source code
def rmsprop(net: nn.Module, learning_rate: float = 1e-3, alpha=0.99, eps=1e-08, weight_decay=0., momentum=0., centered=False):
    return optim.RMSprop(net.parameters(), learning_rate, alpha, eps, weight_decay, momentum, centered)
def save_state(obj: Union[torch.nn.modules.module.Module, torch.optim.optimizer.Optimizer], path: str)
Expand source code
def save_state(obj: Union[nn.Module, optim.Optimizer], path: str):
    if not path.endswith('.pth'):
        path += '.pth'
    torch.save(obj.state_dict(), path)
def sgd(net: torch.nn.modules.module.Module, learning_rate: float = 0.001, momentum=0.0, dampening=0.0, weight_decay=0.0, nesterov=False)
Expand source code
def sgd(net: nn.Module, learning_rate: float = 1e-3, momentum=0., dampening=0., weight_decay=0., nesterov=False):
    return optim.SGD(net.parameters(), learning_rate, momentum, dampening, weight_decay, nesterov)
def u_net(in_channels: int, out_channels: int, levels: int = 4, filters: Union[int, Sequence[+T_co]] = 16, batch_norm: bool = True, activation: Union[str, type] = 'ReLU', in_spatial: Union[int, tuple] = 2, periodic=False, use_res_blocks: bool = False, down_kernel_size=3, up_kernel_size=3) ‑> torch.nn.modules.module.Module
Expand source code
def u_net(in_channels: int,
          out_channels: int,
          levels: int = 4,
          filters: Union[int, Sequence] = 16,
          batch_norm: bool = True,
          activation: Union[str, type] = 'ReLU',
          in_spatial: Union[tuple, int] = 2,
          periodic=False,
          use_res_blocks: bool = False,
          down_kernel_size=3,
          up_kernel_size=3) -> nn.Module:
    if isinstance(filters, (tuple, list)):
        assert len(filters) == levels, f"List of filters has length {len(filters)} but u-net has {levels} levels."
    else:
        filters = (filters,) * levels
    activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
    if isinstance(in_spatial, int):
        d = in_spatial
    else:
        assert isinstance(in_spatial, tuple)
        d = len(in_spatial)
    net = UNet(d, in_channels, out_channels, filters, batch_norm, activation, periodic, use_res_blocks, down_kernel_size, up_kernel_size)
    return net.to(TORCH.get_default_device().ref)
def update_weights(net: torch.nn.modules.module.Module, optimizer: torch.optim.optimizer.Optimizer, loss_function: Callable, *loss_args, check_nan=False, **loss_kwargs)
Expand source code
def update_weights(net: nn.Module, optimizer: optim.Optimizer, loss_function: Callable, *loss_args, check_nan=False, **loss_kwargs):
    optimizer.zero_grad()
    output = loss_function(*loss_args, **loss_kwargs)
    loss = output[0] if isinstance(output, tuple) else output
    loss.sum.backward()
    if isinstance(optimizer, optim.LBFGS):
        def closure():
            result = loss_function(*loss_args, **loss_kwargs)
            loss_val = result[0] if isinstance(result, tuple) else result
            return loss_val.sum
        optimizer.step(closure=closure)
    else:
        if check_nan:
            for p in net.parameters():
                if not torch.all(torch.isfinite(p.grad)):
                    raise RuntimeError(f"NaN in network gradient detected. Parameter: {p}")
        optimizer.step()
    return output

Classes

class ConvClassifier (in_features, in_spatial: list, num_classes: int, batch_norm: bool, use_softmax: bool, blocks: tuple, block_sizes: tuple, dense_layers: tuple, periodic: bool, activation)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConvClassifier(nn.Module):

    def __init__(self, in_features, in_spatial: list, num_classes: int, batch_norm: bool, use_softmax: bool, blocks: tuple, block_sizes: tuple, dense_layers: tuple, periodic: bool, activation):
        super(ConvClassifier, self).__init__()
        d = len(in_spatial)
        self.in_spatial = in_spatial
        self._blocks = blocks
        self.add_module('maxpool', MAX_POOL[d](2))
        for i, (prev, next) in enumerate(zip((in_features,) + tuple(blocks[:-1]), blocks)):
            block_size = block_sizes[i]
            layers = []
            for j in range(block_size):
                layers.append(CONV[d](prev if j == 0 else next, next, kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'))
                layers.append(NORM[d](next) if batch_norm else nn.Identity())
                layers.append(activation())
            self.add_module(f'conv{i+1}', nn.Sequential(*layers))
        flat_size = int(np.prod(in_spatial) * blocks[-1] / (2**d) ** len(blocks))
        self.mlp = mlp(flat_size, num_classes, dense_layers, batch_norm, activation, use_softmax)
        self.flatten = nn.Flatten()

    def forward(self, x):
        for i in range(len(self._blocks)):
            x = getattr(self, f'conv{i+1}')(x)
            x = self.maxpool(x)
        x = self.flatten(x)
        x = self.mlp(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    for i in range(len(self._blocks)):
        x = getattr(self, f'conv{i+1}')(x)
        x = self.maxpool(x)
    x = self.flatten(x)
    x = self.mlp(x)
    return x
class ConvNet (in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ConvNet(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool):
        super(ConvNet, self).__init__()
        activation = ACTIVATIONS[activation]
        if len(layers) < 1:
            layers.append(out_channels)
        self.layers = layers
        self.add_module(f'Conv_in', nn.Sequential(
            CONV[in_spatial](in_channels, layers[0], kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[in_spatial](layers[0]) if batch_norm else nn.Identity(),
            activation()))
        for i in range(1, len(layers)):
            self.add_module(f'Conv{i}', nn.Sequential(
                CONV[in_spatial](layers[i - 1], layers[i], kernel_size=3, padding=1, padding_mode='circular' if periodic else 'zeros'),
                NORM[in_spatial](layers[i]) if batch_norm else nn.Identity(),
                activation()))
        self.add_module(f'Conv_out', CONV[in_spatial](layers[len(layers) - 1], out_channels, kernel_size=1))

    def forward(self, x):
        x = getattr(self, f'Conv_in')(x)
        for i in range(1, len(self.layers)):
            x = getattr(self, f'Conv{i}')(x)
        x = getattr(self, f'Conv_out')(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x = getattr(self, f'Conv_in')(x)
    for i in range(1, len(self.layers)):
        x = getattr(self, f'Conv{i}')(x)
    x = getattr(self, f'Conv_out')(x)
    return x
class CouplingLayer (construct_net: Callable, construction_kwargs: dict, reverse_mask)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class CouplingLayer(nn.Module):

    def __init__(self, construct_net: Callable, construction_kwargs: dict, reverse_mask):
        super(CouplingLayer, self).__init__()
        self.reverse_mask = reverse_mask
        self.s1 = construct_net(**construction_kwargs)
        self.t1 = construct_net(**construction_kwargs)
        self.s2 = construct_net(**construction_kwargs)
        self.t2 = construct_net(**construction_kwargs)

    def forward(self, x, invert=False):
        x = TORCH.as_tensor(x)
        mask = get_mask(x, self.reverse_mask, 'NCHW')
        if invert:
            v1 = x * mask
            v2 = x * (1 - mask)
            u2 = (1 - mask) * (v2 - self.t1(v1)) * torch.exp(-self.s1(v1))
            u1 = mask * (v1 - self.t2(u2)) * torch.exp(-self.s2(u2))
            return u1 + u2
        else:
            u1 = x * mask
            u2 = x * (1 - mask)
            v1 = mask * (u1 * torch.exp(self.s2(u2)) + self.t2(u2))
            v2 = (1 - mask) * (u2 * torch.exp(self.s1(v1)) + self.t1(v1))
            return v1 + v2

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x, invert=False) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x, invert=False):
    x = TORCH.as_tensor(x)
    mask = get_mask(x, self.reverse_mask, 'NCHW')
    if invert:
        v1 = x * mask
        v2 = x * (1 - mask)
        u2 = (1 - mask) * (v2 - self.t1(v1)) * torch.exp(-self.s1(v1))
        u1 = mask * (v1 - self.t2(u2)) * torch.exp(-self.s2(u2))
        return u1 + u2
    else:
        u1 = x * mask
        u2 = x * (1 - mask)
        v1 = mask * (u1 * torch.exp(self.s2(u2)) + self.t2(u2))
        v2 = (1 - mask) * (u2 * torch.exp(self.s1(v1)) + self.t1(v1))
        return v1 + v2
class DenseNet (layers: list, activation: type, batch_norm: bool, use_softmax: bool)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class DenseNet(nn.Module):

    def __init__(self,
                 layers: list,
                 activation: type,
                 batch_norm: bool,
                 use_softmax: bool):
        super(DenseNet, self).__init__()
        self._layers = layers
        self._activation = activation
        self._batch_norm = batch_norm
        for i, (s1, s2) in enumerate(zip(layers[:-2], layers[1:-1])):
            self.add_module(f'linear{i}', _bias0(nn.Linear)(s1, s2, bias=True))
            if batch_norm:
                self.add_module(f'norm{i}', nn.BatchNorm1d(s2))
        self.add_module(f'linear_out', _bias0(nn.Linear)(layers[-2], layers[-1], bias=True))
        self.softmax = nn.Softmax() if use_softmax else None

    def forward(self, x):
        register_module_call(self)
        x = TORCH.as_tensor(x)
        for i in range(len(self._layers) - 2):
            x = self._activation()(getattr(self, f'linear{i}')(x))
            if self._batch_norm:
                x = getattr(self, f'norm{i}')(x)
        x = getattr(self, f'linear_out')(x)
        if self.softmax:
            x = self.softmax(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    register_module_call(self)
    x = TORCH.as_tensor(x)
    for i in range(len(self._layers) - 2):
        x = self._activation()(getattr(self, f'linear{i}')(x))
        if self._batch_norm:
            x = getattr(self, f'norm{i}')(x)
    x = getattr(self, f'linear_out')(x)
    if self.softmax:
        x = self.softmax(x)
    return x
class DenseResNetBlock (layers, batch_norm, activation)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class DenseResNetBlock(nn.Module):

    def __init__(self, layers, batch_norm, activation):
        super(DenseResNetBlock, self).__init__()
        self._layers = layers
        self._activation = activation
        self._batch_norm = batch_norm
        for i, (s1, s2) in enumerate(zip(layers[:-1], layers[1:])):
            self.add_module(f'linear{i}', _bias0(nn.Linear)(s1, s2, bias=True))
            if batch_norm:
                self.add_module(f'norm{i}', nn.BatchNorm1d(s2))

    def forward(self, x):
        x0 = x
        for i in range(len(self._layers) - 1):
            x = self._activation()(getattr(self, f'linear{i}')(x))
            if self._batch_norm:
                x = getattr(self, f'norm{i}')(x)
        return x + x0

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x0 = x
    for i in range(len(self._layers) - 1):
        x = self._activation()(getattr(self, f'linear{i}')(x))
        if self._batch_norm:
            x = getattr(self, f'norm{i}')(x)
    return x + x0
class DoubleConv (d: int, in_channels: int, out_channels: int, mid_channels: int, batch_norm: bool, activation: type, periodic: bool, kernel_size=3)

(convolution => [BN] => ReLU) * 2

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class DoubleConv(nn.Module):
    """(convolution => [BN] => ReLU) * 2"""

    def __init__(self, d: int, in_channels: int, out_channels: int, mid_channels: int, batch_norm: bool, activation: type, periodic: bool, kernel_size=3):
        super().__init__()
        self.add_module('double_conv', nn.Sequential(
            CONV[d](in_channels, mid_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[d](mid_channels) if batch_norm else nn.Identity(),
            activation(),
            CONV[d](mid_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros'),
            NORM[d](out_channels) if batch_norm else nn.Identity(),
            nn.ReLU(inplace=True)
        ))

    def forward(self, x):
        return self.double_conv(x)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    return self.double_conv(x)
class Down (d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: Union[str, type], use_res_blocks: bool, periodic, kernel_size: int)

Downscaling with maxpool then double conv or resnet_block

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class Down(nn.Module):
    """Downscaling with maxpool then double conv or resnet_block"""

    def __init__(self, d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: Union[str, type], use_res_blocks: bool, periodic, kernel_size: int):
        super().__init__()
        self.add_module('maxpool', MAX_POOL[d](2))
        if use_res_blocks:
            self.add_module('conv', ResNetBlock(d, in_channels, out_channels, batch_norm, activation, periodic, kernel_size))
        else:
            self.add_module('conv', DoubleConv(d, in_channels, out_channels, out_channels, batch_norm, activation, periodic, kernel_size))

    def forward(self, x):
        x = self.maxpool(x)
        return self.conv(x)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x = self.maxpool(x)
    return self.conv(x)
class InvertibleNet (num_blocks: int, construct_net, construction_kwargs: dict)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class InvertibleNet(nn.Module):
    def __init__(self, num_blocks: int, construct_net, construction_kwargs: dict):
        super(InvertibleNet, self).__init__()
        self.num_blocks = num_blocks
        for i in range(num_blocks):
            self.add_module(f'coupling_block{i + 1}', CouplingLayer(construct_net, construction_kwargs, (i % 2 == 0)))

    def forward(self, x, backward=False):
        if backward:
            for i in range(self.num_blocks, 0, -1):
                x = getattr(self, f'coupling_block{i}')(x, backward)
        else:
            for i in range(1, self.num_blocks + 1):
                x = getattr(self, f'coupling_block{i}')(x, backward)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x, backward=False) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x, backward=False):
    if backward:
        for i in range(self.num_blocks, 0, -1):
            x = getattr(self, f'coupling_block{i}')(x, backward)
    else:
        for i in range(1, self.num_blocks + 1):
            x = getattr(self, f'coupling_block{i}')(x, backward)
    return x
class ResNet (in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ResNet(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, layers, batch_norm, activation, periodic: bool):
        super(ResNet, self).__init__()
        self.layers = layers
        if len(self.layers) < 1:
            layers.append(out_channels)
        self.add_module('Res_in', ResNetBlock(in_spatial, in_channels, layers[0], batch_norm, activation, periodic))
        for i in range(1, len(layers)):
            self.add_module(f'Res{i}', ResNetBlock(in_spatial, layers[i - 1], layers[i], batch_norm, activation, periodic))
        self.add_module('Res_out', CONV[in_spatial](layers[len(layers) - 1], out_channels, kernel_size=1))

    def forward(self, x):
        x = TORCH.as_tensor(x)
        x = getattr(self, 'Res_in')(x)
        for i in range(1, len(self.layers)):
            x = getattr(self, f'Res{i}')(x)
        x = getattr(self, 'Res_out')(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x = TORCH.as_tensor(x)
    x = getattr(self, 'Res_in')(x)
    for i in range(1, len(self.layers)):
        x = getattr(self, f'Res{i}')(x)
    x = getattr(self, 'Res_out')(x)
    return x
class ResNetBlock (in_spatial, in_channels, out_channels, batch_norm, activation, periodic: bool, kernel_size=3)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class ResNetBlock(nn.Module):

    def __init__(self, in_spatial, in_channels, out_channels, batch_norm, activation, periodic: bool, kernel_size=3):
        # Since in_channels and out_channels might be different, we need a sampling layer for up/down sampling input in order to add it as a skip connection
        super(ResNetBlock, self).__init__()
        if in_channels != out_channels:
            self.sample_input = CONV[in_spatial](in_channels, out_channels, kernel_size=1, padding=0)
            self.bn_sample = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        else:
            self.sample_input = nn.Identity()
            self.bn_sample = nn.Identity()
        self.activation = ACTIVATIONS[activation] if isinstance(activation, str) else activation
        self.bn1 = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        self.conv1 = CONV[in_spatial](in_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros')
        self.bn2 = NORM[in_spatial](out_channels) if batch_norm else nn.Identity()
        self.conv2 = CONV[in_spatial](out_channels, out_channels, kernel_size=kernel_size, padding=1, padding_mode='circular' if periodic else 'zeros')

    def forward(self, x):
        x = TORCH.as_tensor(x)
        out = self.activation()(self.bn1(self.conv1(x)))
        out = self.activation()(self.bn2(self.conv2(out)))
        out = (out + self.bn_sample(self.sample_input(x)))
        return out

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    x = TORCH.as_tensor(x)
    out = self.activation()(self.bn1(self.conv1(x)))
    out = self.activation()(self.bn2(self.conv2(out)))
    out = (out + self.bn_sample(self.sample_input(x)))
    return out
class UNet (d: int, in_channels: int, out_channels: int, filters: tuple, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, down_kernel_size: int, up_kernel_size: int)

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:to, etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class UNet(nn.Module):

    def __init__(self, d: int, in_channels: int, out_channels: int, filters: tuple, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, down_kernel_size: int, up_kernel_size: int):
        super(UNet, self).__init__()
        self._levels = len(filters)
        self._spatial_rank = d
        if use_res_blocks:
            self.add_module('inc', ResNetBlock(d, in_channels, filters[0], batch_norm, activation, periodic, down_kernel_size))
        else:
            self.add_module('inc', DoubleConv(d, in_channels, filters[0], filters[0], batch_norm, activation, periodic, down_kernel_size))
        for i in range(1, self._levels):
            self.add_module(f'down{i}', Down(d, filters[i - 1], filters[i], batch_norm, activation, periodic, use_res_blocks, down_kernel_size))
            self.add_module(f'up{i}', Up(d, filters[i] + filters[i - 1], filters[i - 1], batch_norm, activation, periodic, use_res_blocks, up_kernel_size))
        self.add_module('outc', CONV[d](filters[0], out_channels, kernel_size=1))

    def forward(self, x):
        register_module_call(self)
        x = TORCH.as_tensor(x)
        x = self.inc(x)
        xs = [x]
        for i in range(1, self._levels):
            x = getattr(self, f'down{i}')(x)
            xs.insert(0, x)
        for i in range(1, self._levels):
            x = getattr(self, f'up{i}')(x, xs[i])
        x = self.outc(x)
        return x

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x):
    register_module_call(self)
    x = TORCH.as_tensor(x)
    x = self.inc(x)
    xs = [x]
    for i in range(1, self._levels):
        x = getattr(self, f'down{i}')(x)
        xs.insert(0, x)
    for i in range(1, self._levels):
        x = getattr(self, f'up{i}')(x, xs[i])
    x = self.outc(x)
    return x
class Up (d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, kernel_size: int)

Upscaling then double conv

Initializes internal Module state, shared by both nn.Module and ScriptModule.

Expand source code
class Up(nn.Module):
    """Upscaling then double conv"""

    _MODES = [None, 'linear', 'bilinear', 'trilinear']

    def __init__(self, d: int, in_channels: int, out_channels: int, batch_norm: bool, activation: type, periodic: bool, use_res_blocks: bool, kernel_size: int):
        super().__init__()
        up = nn.Upsample(scale_factor=2, mode=Up._MODES[d])
        if use_res_blocks:
            conv = ResNetBlock(d, in_channels, out_channels, batch_norm, activation, periodic, kernel_size)
        else:
            conv = DoubleConv(d, in_channels, out_channels, in_channels // 2, batch_norm, activation, periodic, kernel_size)
        self.add_module('up', up)
        self.add_module('conv', conv)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        # diff = [x2.size()[i] - x1.size()[i] for i in range(2, len(x1.shape))]
        # x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
        #                 diffY // 2, diffY - diffY // 2])
        # if you have padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
        x = torch.cat([x2, x1], dim=1)
        return self.conv(x)

Ancestors

  • torch.nn.modules.module.Module

Class variables

var call_super_init : bool
var dump_patches : bool
var training : bool

Methods

def forward(self, x1, x2) ‑> Callable[..., Any]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the :class:Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Expand source code
def forward(self, x1, x2):
    x1 = self.up(x1)
    # input is CHW
    # diff = [x2.size()[i] - x1.size()[i] for i in range(2, len(x1.shape))]
    # x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
    #                 diffY // 2, diffY - diffY // 2])
    # if you have padding issues, see
    # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
    # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
    x = torch.cat([x2, x1], dim=1)
    return self.conv(x)