Module phi.geom

Differentiable geometry package.

Classes:

See the phi.geom module documentation at https://tum-pbs.github.io/PhiFlow/Geometry.html

Functions

def as_sdf(geo: phi.geom._geom.Geometry, bounds=None, rel_margin=None, abs_margin=0.0, separate: Union[str, tuple, list, set, ForwardRef('Shape'), Callable] = None, method='auto') ‑> phi.geom._sdf.SDF

Represent existing geometry as a signed distance function.

Args

geo
Geometry to represent as a signed distance function. Must implement Geometry.approximate_signed_distance().
bounds
Bounds of the SDF. If None will be determined from bounds of geo and rel_margin/abs_margin.
rel_margin
Relative size to pad the domain on all sides around the bounds of geo. For example, 0.1 will pad 10% of geo's size in each axis on both sides.
abs_margin
World-space size to pad the domain on all sides around the bounds of geo.
separate
Dimensions along which to unstack geo and return individual SDFs. Once created, SDFs cannot be unstacked.

Returns:

def assert_same_rank(rank1, rank2, error_message)

Tests that two objects have the same spatial rank. Objects can be of types: int, None (no check), Geometry, Shape, Tensor

def bounding_box(geometry: Union[phiml.math._tensors.Tensor, phi.geom._geom.Geometry]) ‑> phi.geom._box.Box

Builds a bounding box around geometry or a collection of points.

Args

geometry
Geometry object or Tensor of points.

Returns

Bounding Box containing only batch dims and vector.

def build_mesh(bounds: phi.geom._box.Box = None, resolution=(), obstacles: Union[phi.geom._geom.Geometry, Dict[str, phi.geom._geom.Geometry]] = None, method='quad', cell_dim: phiml.math._shape.Shape = (cellsⁱ=None), face_format: str = 'csc', max_squish: Optional[float] = 0.5, **resolution_: Union[int, phiml.math._tensors.Tensor, tuple, list, Any]) ‑> phi.geom._mesh.Mesh

Build a mesh for a given domain, respecting obstacles.

Args

bounds
Bounds for uniform cells.
resolution
Base resolution
obstacles
Single Geometry or dict mapping boundary name to corresponding Geometry.
method
Meshing algorithm. Only quad is currently supported.
cell_dim
Dimension along which to list the cells. This should be an instance dimension.
face_format
Sparse storage format for cell connectivity.
max_squish
Smallest allowed cell size compared to the smallest regular cell.
**resolution_
For uniform grid, pass resolution as int and specify bounds. Or pass a sequence of floats for each dimension, specifying the vertex positions along each axis. This allows for variable cell stretching.

Returns

Mesh

def concat(values: Union[tuple, list], dim: Union[phiml.math._shape.Shape, str], expand_values=False, **kwargs)

Concatenates a sequence of phiml.math.magic.Shapable objects, e.g. Tensor, along one dimension. All values must have the same spatial, instance and channel dimensions and their sizes must be equal, except for dim. Batch dimensions will be added as needed.

Args

values
Tuple or list of phiml.math.magic.Shapable, such as phiml.math.Tensor
dim
Concatenation dimension, must be present in all values. The size along dim is determined from values and can be set to undefined (None). Alternatively, a str of the form 't->name:t' can be specified, where t is on of b d i s c denoting the dimension type. This first packs all dimensions of the input into a new dim with given name and type, then concatenates the values along this dim.
expand_values
If True, will first add missing dimensions to all values, not just batch dimensions. This allows tensors with different dimensions to be concatenated. The resulting tensor will have all dimensions that are present in values.
**kwargs
Additional keyword arguments required by specific implementations. Adding spatial dimensions to fields requires the bounds: Box argument specifying the physical extent of the new dimensions. Adding batch dimensions must always work without keyword arguments.

Returns

Concatenated Tensor

Examples

>>> concat([math.zeros(batch(b=10)), math.ones(batch(b=10))], 'b')
(bᵇ=20) 0.500 ± 0.500 (0e+00...1e+00)
>>> concat([vec(x=1, y=0), vec(z=2.)], 'vector')
(x=1.000, y=0.000, z=2.000) float64
def embed(geometry: phi.geom._geom.Geometry, projected_dims: Union[phiml.math._shape.Shape, str, tuple, list, ForwardRef(None)]) ‑> phi.geom._geom.Geometry

Adds fake spatial dimensions to a geometry. The geometry value will be constant along the added dimensions, as if it had infinite length in these directions.

Dimensions that are already present with geometry are ignored.

Args

geometry
Geometry
projected_dims
Additional dimensions

Returns

Geometry with spatial rank geometry.spatial_rank + projected_dims.rank.

def enclosing_grid(*geometries: phi.geom._geom.Geometry, voxel_count: int, rel_margin=0.0, abs_margin=0.0) ‑> phi.geom._grid.UniformGrid

Constructs a UniformGrid which fully encloses the geometries. The grid voxels are chosen to have approximately the same size along each axis.

Args

*geometries
Geometry objects which should lie within the grid.
voxel_count
Approximate number of total voxels.
rel_margin
Relative margin, i.e. empty space on each side as a fraction of the bounding box size of geometries.
abs_margin
Absolute margin, i.e. empty space on each side.

Returns

UniformGrid

def graph(nodes: Union[phiml.math._tensors.Tensor, phi.geom._geom.Geometry], edges: phiml.math._tensors.Tensor, boundary: Dict[str, Dict[str, slice]] = None, build_distances=True, build_bounding_distance=False) ‑> phi.geom._graph.Graph

Construct a Graph.

Args

nodes
Location Tensor or Geometry objects representing the nodes.
edges
Connectivity and edge value Tensor.
boundary
Named boundary sets.
build_distances
Whether to compute all edge lengths. This enables the properties Graph.deltas, Graph.unit_deltas, Graph.distances.
build_bounding_distance
Whether to compute the maximum edge length. This enables the property Graph.bounding_distance.

Returns

Graph

def infinite_cylinder(center=None, radius=None, inf_dim: Union[str, phiml.math._shape.Shape, tuple, list] = None, **center_) ‑> phi.geom._geom.Geometry

Creates an infinite cylinder. This is equal to embedding an n-dimensional Sphere in n+1 dimensions.

See Also: Sphere, embed()

Args

center
Center coordinates without inf_dim. Alternatively use keyword arguments.
radius
Cylinder radius.
inf_dim
Dimension along which the cylinder is infinite. Use Geometry.rotated() if the direction does not align with an axis.
**center_
Alternatively specify center coordinates without inf_dim as keyword arguments.

Returns

Geometry

def intersection(*geometries: phi.geom._geom.Geometry, dim=(intersectionⁱ=None)) ‑> phi.geom._geom.Geometry

Intersection of the given geometries. A point lies inside the union if it lies within all of the geometries.

Args

*geometries
arbitrary geometries with same spatial dims. Arbitrary batch dims are allowed.
dim
Intersection dimension. This must be an instance dimension.

Returns

intersection Geometry

def invert(geometry: phi.geom._geom.Geometry)

Swaps inside and outside.

Args

geometry
Geometry to swap

Returns

New Geometry object with same surface but swapped normals

def line_trace(geo: phi.geom._geom.Geometry, origin: phiml.math._tensors.Tensor, direction: phiml.math._tensors.Tensor, side='both', tolerance=None, max_iter=64, step_size=0.9, max_line_length=None) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, Optional[phiml.math._tensors.Tensor]]

Trace a line until it hits the surface of geo. The surface can be hit either from the outside or the inside.

Args

geo
Geometry that implements approximate_closest_surface.
origin
Line start location.
direction
Unit vector pointing in the line direction.
side
'outside' or 'inside' or 'both'.
tolerance
Surface distance tolerance.
max_iter
Maximum number of steps per line.
step_size
Step size factor. This can be set to 1 if the signed distance values of geo are exact. For inexact SDFs, smaller step sizes prevent skipping over surfaces.

Returns

hit
Whether a surface intersection was found for the line.
distance
Distance between the line and the surface.
position
Hit location or point until which the line was traced.
normal
Surface normal at hit location
hit_index
Geometry face index at hit location
def load_gmsh(file: str, boundary_names: Sequence[str] = None, cell_dim=(cellsⁱ=None), face_format: str = 'csc')

Load an unstructured mesh from a .msh file.

This requires the package meshio to be installed.

Args

file
Path to .su2 file.
boundary_names
Boundary identifiers corresponding to the blocks in the file. If not specified, boundaries will be numbered.
cell_dim
Dimension along which to list the cells. This should be an instance dimension.
face_format
Sparse storage format for cell connectivity.

Returns

Mesh

def load_stl(file: str, face_dim=(facesⁱ=None))
def load_su2(file_or_mesh: str, cell_dim=(cellsⁱ=None), face_format: str = 'csc') ‑> phi.geom._mesh.Mesh

Load an unstructured mesh from a .su2 file.

This requires the package ezmesh to be installed.

Args

file_or_mesh
Path to .su2 file or ezmesh Mesh instance.
cell_dim
Dimension along which to list the cells. This should be an instance dimension.
face_format
Sparse storage format for cell connectivity.

Returns

Mesh

def mesh(vertices: Union[phiml.math._tensors.Tensor, phi.geom._geom.Geometry], elements: phiml.math._tensors.Tensor, boundaries: Union[str, Dict[str, List[Sequence]], ForwardRef(None)] = None, element_rank: int = None, build_faces=True, build_vertex_connectivity=True, build_element_connectivity=True, build_normals=True, normals=None, face_format: str = 'csc')

Create a mesh from vertex positions and vertex lists.

Args

vertices
Tensor with one instance and one channel dimension vector.
elements
Lists of vertex indices as 2D tensor. The elements must be listed along an instance dimension, and the vertex indices belonging to the same polygon must be listed along a spatial dimension.
boundaries
Pass a str to assign one name to all boundary faces. For multiple boundaries, pass a dict mapping group names str to lists of faces, defined by their vertices. The last entry can be None to group all boundary faces not explicitly listed before. The boundaries dict maps boundary names to a list of edges (point pairs) in 2D and faces (3 or more points) in 3D (not yet supported).
build_faces
Whether to extract face information from the given vertex, polygon and boundary information.
build_vertex_connectivity
Whether to build a connectivity matrix for vertex-vertex connections.
face_format
Storage format for cell connectivity, must be one of csc, coo, csr, dense.

Returns

Mesh

def mesh_from_numpy(points: Sequence[Sequence], polygons: Sequence[Sequence], boundaries: Union[str, Dict[str, List[Sequence]], ForwardRef(None)] = None, element_rank: int = None, build_faces=True, build_vertex_connectivity=True, build_normals=True, normals=None, cell_dim: phiml.math._shape.Shape = (cellsⁱ=None), face_format: str = 'csc') ‑> phi.geom._mesh.Mesh

Construct an unstructured mesh from vertices.

Args

points
2D numpy array of shape (num_points, point_coord). The last dimension must have length 2 for 2D meshes and 3 for 3D meshes.
polygons
List of elements. Each polygon is defined as a sequence of point indices mapping into `points'. E.g. [(0, 1, 2)] denotes a single triangle connecting points 0, 1, and 2.
boundaries
An unstructured mesh can have multiple boundaries, each defined by a name str and a list of faces, defined by their vertices. The boundaries dict maps boundary names to a list of edges (point pairs) in 2D and faces (3 or more points) in 3D (not yet supported).
build_faces
Whether to extract face information from the given vertex, polygon and boundary information.
build_vertex_connectivity
Whether to build a connectivity matrix for vertex-vertex connections.
cell_dim
Dimension along which to list the cells. This should be an instance dimension.
face_format
Storage format for cell connectivity, must be one of csc, coo, csr, dense.

Returns

Mesh

def normal_from_slope(slope: phiml.math._tensors.Tensor, space: Union[str, phiml.math._shape.Shape, Sequence[str]])

Computes the normal vector of a line, plane, or hyperplane.

Args

slope
Line Slope (2D), plane slope (3D) or hyperplane slope (4+D). Must have one channel dimension listing the vector components. The vector must list all but one dimensions of space.
space
Ordered spatial dimensions as comma-separated string, sequence of names or Shape

Returns

Normal vector with the channel dimension of slope listing all dimensions of space in that order.

def numpy_sdf(sdf: Callable, bounds: phi.geom._box.BaseBox, center: phiml.math._tensors.Tensor = None) ‑> phi.geom._sdf.SDF

Define a SDF (signed distance function) from a NumPy function.

Args

sdf
Function mapping a location numpy.ndarray of shape (points, vector) to the corresponding SDF value (points,).
bounds
Bounds inside which the function is defined.
center
Optional center position of the object encoded via sdf.

Returns

SDF

def pack_dims(value, dims: Union[str, tuple, list, set, ForwardRef('Shape'), Callable], packed_dim: Union[phiml.math._shape.Shape, str], pos: Optional[int] = None, **kwargs)

Compresses multiple dimensions into a single dimension by concatenating the elements. Elements along the new dimensions are laid out according to the order of dims. If the order of dims differs from the current dimension order, the tensor is transposed accordingly. This function replaces the traditional reshape for these cases.

The type of the new dimension will be equal to the types of dims. If dims have varying types, the new dimension will be a batch dimension.

If none of dims exist on value, packed_dim will be added only if it is given with a definite size and value is not a primitive type.

See Also: unpack_dim()

Args

value
phiml.math.magic.Shapable, such as phiml.math.Tensor.
dims
Dimensions to be compressed in the specified order.
packed_dim
Single-dimension Shape.
pos
Index of new dimension. None for automatic, -1 for last, 0 for first.
**kwargs
Additional keyword arguments required by specific implementations. Adding spatial dimensions to fields requires the bounds: Box argument specifying the physical extent of the new dimensions. Adding batch dimensions must always work without keyword arguments.

Returns

Same type as value.

Examples

>>> pack_dims(math.zeros(spatial(x=4, y=3)), spatial, instance('points'))
(pointsⁱ=12) const 0.0
def rotate(geometry: phi.geom._geom.Geometry, rot: Union[phiml.math._tensors.Tensor, float], pivot: phiml.math._tensors.Tensor = None) ‑> phi.geom._geom.Geometry

Rotate a Geometry about an axis given by rot and pivot.

Args

geometry
Geometry to rotate
rot
Rotation, either as Euler angles or rotation matrix.
pivot
Any point lying on the rotation axis. Defaults to the bounding box center.

Returns

Rotated Geometry

def sample_function(f: Callable, elements: phi.geom._geom.Geometry, at: str, extrapolation: phiml.math.extrapolation.Extrapolation) ‑> phiml.math._tensors.Tensor

Calls f, passing either the elements directly or the relevant sample points as a Tensor, depending on the signature of f.

Args

f
Function taking a Geometry or location Tensor´ and returning aTensor`. A Geometry will be passed if the first argument of f is called geometry or geo or ends with _geo.
elements
Geometry on which to sample f.
at
Set of sample points, see Geometry.sets.
extrapolation
Determines which boundary points are relevant.

Returns

Sampled values as Tensor.

def sample_sdf(geometry: phi.geom._geom.Geometry, bounds: phi.geom._box.BaseBox = None, resolution: phiml.math._shape.Shape = (), approximate_outside=False, rebuild: Optional[str] = None, valid_dist=None, rel_margin=0.1, abs_margin=0.0, **resolution_: int) ‑> phi.geom._sdf_grid.SDFGrid

Build a grid of signed distance values for a given Geometry object.

Args

geometry
Geometry to capture.
bounds
Grid limits in world space.
resolution
Grid resolution.
**resolution_
Grid resolution as kwargs, e.g. x=64, y=32.
approximate_outside
Whether queries outside the SDF grid should return approximate values. This requires additional computations.
rebuild
If 'from-surface', SDF values are calculated from a narrow strip above the enclosed surface. This is more accurate but requires additional steps. If None (default), SDF values are queried from geometry. 'auto' rebuilds when geometry querying is expected to be in accurate.

Returns

SDF grid as Geometry.

def stack(values: Union[tuple, list, dict], dim: Union[phiml.math._shape.Shape, str], expand_values=False, **kwargs)

Stacks values along the new dimension dim. All values must have the same spatial, instance and channel dimensions. If the dimension sizes vary, the resulting tensor will be non-uniform. Batch dimensions will be added as needed.

Stacking tensors is performed lazily, i.e. the memory is allocated only when needed. This makes repeated stacking and slicing along the same dimension very efficient, i.e. jit-compiled functions will not perform these operations.

Args

values
Collection of phiml.math.magic.Shapable, such as phiml.math.Tensor If a dict, keys must be of type str and are used as item names along dim.
dim
Shape with a least one dimension. None of these dimensions can be present with any of the values. If dim is a single-dimension shape, its size is determined from len(values) and can be left undefined (None). If dim is a multi-dimension shape, its volume must be equal to len(values).
expand_values
If True, will first add missing dimensions to all values, not just batch dimensions. This allows tensors with different dimensions to be stacked. The resulting tensor will have all dimensions that are present in values.
**kwargs
Additional keyword arguments required by specific implementations. Adding spatial dimensions to fields requires the bounds: Box argument specifying the physical extent of the new dimensions. Adding batch dimensions must always work without keyword arguments.

Returns

Tensor containing values stacked along dim.

Examples

>>> stack({'x': 0, 'y': 1}, channel('vector'))
(x=0, y=1)
>>> stack([math.zeros(batch(b=2)), math.ones(batch(b=2))], channel(c='x,y'))
(x=0.000, y=1.000); (x=0.000, y=1.000) (bᵇ=2, cᶜ=x,y)
>>> stack([vec(x=1, y=0), vec(x=2, y=3.)], batch('b'))
(x=1.000, y=0.000); (x=2.000, y=3.000) (bᵇ=2, vectorᶜ=x,y)
def surface_mesh(geo: phi.geom._geom.Geometry, rel_dx: float = None, abs_dx: float = None, method='auto', build_vertex_connectivity=False, build_normals=False) ‑> phi.geom._mesh.Mesh

Create a surface Mesh from a Geometry.

Args

geo
Geometry to convert. Must implement approximate_signed_distance.
rel_dx
Relative mesh resolution as fraction of bounding box size.
abs_dx
Absolute mesh resolution. If both rel_dx and abs_dx are provided, the lower value is used.
method
'auto' to select based on the type of geo. 'lewiner' or 'lorensen' for marching cubes.

Returns

Mesh if there is any geometry

def union(*geometries, dim=(unionⁱ=None)) ‑> phi.geom._geom.Geometry

Union of the given geometries. A point lies inside the union if it lies within at least one of the geometries.

Args

*geometries
arbitrary geometries with same spatial dims. Arbitrary batch dims are allowed.
dim
Union dimension. This must be an instance dimension.

Returns

union Geometry

Classes

class BaseBox

Abstract base type for box-like geometries.

Expand source code
class BaseBox(Geometry):  # not a Subwoofer
    """
    Abstract base type for box-like geometries.
    """

    def __ne__(self, other):
        return not self == other

    @property
    def shape(self):
        raise NotImplementedError()

    @property
    def center(self) -> Tensor:
        raise NotImplementedError()

    @property
    def size(self) -> Tensor:
        raise NotImplementedError(self)

    @property
    def half_size(self) -> Tensor:
        raise NotImplementedError(self)

    @property
    def lower(self) -> Tensor:
        raise NotImplementedError(self)

    @property
    def upper(self) -> Tensor:
        raise NotImplementedError(self)

    @property
    def rotation_matrix(self) -> Optional[Tensor]:
        raise NotImplementedError(self)

    @property
    def is_size_variable(self):
        raise NotImplementedError(self)

    @property
    def volume(self) -> Tensor:
        return math.prod(self.size, 'vector')

    def bounding_radius(self):
        return math.vec_length(self.half_size)

    def global_to_local(self, global_position: Tensor, scale=True, origin='lower') -> Tensor:
        """
        Transform world-space coordinates into box-space coordinates.

        Args:
            global_position: World-space coordinates.
            scale: Whether to re-scale the output so that [0, 1] or [-1, 1] represent the box for `origin='lower'` or `origin='center'`, respectively.
            origin: 'lower' or 'center'

        Returns:
            Box-space coordinate `Tensor`
        """
        assert origin in ['lower', 'center', 'upper']
        origin_loc = getattr(self, origin)
        pos = global_position if math.always_close(origin_loc, 0) else global_position - origin_loc
        pos = math.rotate_vector(pos, self.rotation_matrix, invert=True)
        if scale:
            pos /= (self.half_size if origin == 'center' else self.size)
        return pos

    def local_to_global(self, local_position, scale=True, origin='lower'):
        assert origin in ['lower', 'center', 'upper']
        origin_loc = getattr(self, origin)
        pos = local_position * (self.half_size if origin == 'center' else self.size) if scale else local_position
        return math.rotate_vector(pos, self.rotation_matrix) + origin_loc

    def largest(self, dim: DimFilter) -> 'BaseBox':
        dim = self.shape.without('vector').only(dim)
        if not dim:
            return self
        return Box(math.min(self.lower, dim), math.max(self.upper, dim))

    def smallest(self, dim: DimFilter) -> 'BaseBox':
        dim = self.shape.without('vector').only(dim)
        if not dim:
            return self
        return Box(math.max(self.lower, dim), math.min(self.upper, dim))

    def lies_inside(self, location: Tensor):
        assert self.rotation_matrix is None, f"Please override lies_inside() for rotated boxes"
        bool_inside = (location >= self.lower) & (location <= self.upper)
        bool_inside = math.all(bool_inside, 'vector')
        bool_inside = math.any(bool_inside, self.shape.instance - instance(location))  # union for instance dimensions
        return bool_inside

    def approximate_signed_distance(self, location: Union[Tensor, tuple]):
        """
        Computes the signed L-infinity norm (manhattan distance) from the location to the nearest side of the box.
        For an outside location `l` with the closest surface point `s`, the distance is `max(abs(l - s))`.
        For inside locations it is `-max(abs(l - s))`.

        Args:
          location: float tensor of shape (batch_size, ..., rank)

        Returns:
          float tensor of shape (*location.shape[:-1], 1).

        """
        location = self.global_to_local(location, scale=False, origin='center')
        distance = math.abs(location) - self.half_size
        distance = math.max(distance, 'vector')
        distance = math.min(distance, self.shape.instance)  # union for instance dimensions
        return distance

    def push(self, positions: Tensor, outward: bool = True, shift_amount: float = 0) -> Tensor:
        loc_to_center = self.global_to_local(positions, scale=False, origin='center')
        sgn_dist_from_surface = math.abs(loc_to_center) - self.half_size
        rotation_matrix = self.rotation_matrix
        if outward:
            # --- get negative distances (particles are inside) towards the nearest boundary and add shift_amount ---
            distances_of_interest = (sgn_dist_from_surface == math.max(sgn_dist_from_surface, 'vector')) & (sgn_dist_from_surface < 0)
            shift = distances_of_interest * (sgn_dist_from_surface - shift_amount)
            # ToDo reduce instance dim
        else:  # inward
            shift = (sgn_dist_from_surface + shift_amount) * (sgn_dist_from_surface > 0)  # get positive distances (particles are outside) and add shift_amount
            if instance(self):
                shift, loc_to_center, rotation_matrix = math.at_min((shift, loc_to_center, rotation_matrix), key=math.vec_length(shift), dim=instance)
            shift = math.where(abs(shift) > abs(loc_to_center), abs(loc_to_center), shift)  # ensure inward shift ends at center
        shift = math.rotate_vector(shift, rotation_matrix)
        return positions + math.where(loc_to_center < 0, 1, -1) * shift

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        loc_to_center = self.global_to_local(location, scale=False, origin='center')
        sgn_surf_delta = math.abs(loc_to_center) - self.half_size
        if instance(self):
            raise NotImplementedError
            self_center, self_radius, sgn_dist, center_delta, center_dist = math.at_min((self.center, self.radius, sgn_dist, center_delta, center_dist), key=abs(sgn_dist), dim=instance)
        # is_inside = math.all(sgn_surf_delta < 0, 'vector')
        # abs_surf_delta = abs(sgn_surf_delta)
        max_sgn_dist = math.max(sgn_surf_delta, 'vector')
        normal_axis = max_sgn_dist == sgn_surf_delta  # ToDo only one if inside
        normal = math.vec_normalize(normal_axis * math.sign(loc_to_center))
        surf_to_center = math.where(normal_axis, math.sign(loc_to_center) * self.half_size, loc_to_center)
        closest_to_center = math.clip(surf_to_center, -self.half_size, self.half_size)
        surface_pos = self.local_to_global(closest_to_center, scale=False, origin='center')
        delta = surface_pos - location
        face_index = expand(0, non_channel(location))
        offset = normal.vector @ surface_pos.vector
        sgn_surf_dist = math.vec_length(delta) * math.sign(max_sgn_dist)
        return sgn_surf_dist, delta, normal, offset, face_index

    def project(self, *dimensions: str):
        """ Project this box into a lower-dimensional space. """
        warnings.warn("Box.project(dims) is deprecated. Use Box.vector[dims] instead", DeprecationWarning, stacklevel=2)
        return self.vector[dimensions]

    def sample_uniform(self, *shape: Shape) -> Tensor:
        uniform = math.random_uniform(self.shape.non_singleton.without('vector'), *shape, self.shape['vector'])
        return self.lower + uniform * self.size

    def sample_uniform_surface(self, *shape: Shape) -> Tensor:
        assert not instance(self), "sample_uniform_surface not yet supported for unions of boxes"
        samples = math.random_uniform(self.shape.non_singleton.non_instance, *shape, low=self.lower, high=self.upper)
        which = math.random_uniform(samples.shape.without('vector'))
        lo_or_up = math.where(which > .5, self.upper, self.lower)
        which = which * 2 % 1
        # --- which axis ---
        areas = self.face_areas
        total_area = math.sum(areas)
        frac_area = math.sum(areas / total_area, '~side')
        cum_area = math.cumulative_sum(frac_area, '~vector')
        axis = math.min(math.where(which <= cum_area, math.range(self.shape['vector'].as_dual()), self.spatial_rank), '~vector')
        axis_one_hot = math.scatter(math.zeros(samples.shape, dtype=bool), expand(axis, channel(index='vector')), True, treat_as_batch=samples.shape.without('vector'))
        math.assert_close(1, math.sum(axis_one_hot, 'vector'))
        samples = math.where(axis_one_hot, lo_or_up, samples)
        return samples

    def corner_representation(self) -> 'Box':
        assert self.rotation_matrix is None, f"corner_representation does not support rotations"
        return Box(self.lower, self.upper)

    box = corner_representation

    def center_representation(self, size_variable=True) -> 'Cuboid':
        return Cuboid(self.center, self.half_size, size_variable=size_variable)

    def contains(self, other: 'BaseBox'):
        """ Tests if the other box lies fully inside this box. """
        return np.all(other.lower >= self.lower) and np.all(other.upper <= self.upper)

    def scaled(self, factor: Union[float, Tensor]) -> 'BaseBox':
        return Cuboid(self.center, self.half_size * factor, size_variable=True)

    @property
    def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def faces(self) -> 'Geometry':
        return Cuboid(self.face_centers, self._half_size, self._rotation_matrix, size_variable=False)

    @property
    def face_centers(self) -> Tensor:
        return self.center + self.face_normals * self.half_size

    @property
    def face_normals(self) -> Tensor:
        unit_vectors = math.to_float(math.range(self.shape['vector']) == math.range(dual(**self.shape['vector'].untyped_dict)))
        vectors = math.rotate_vector(unit_vectors, self.rotation_matrix)
        return vectors * math.vec(dual('side'), lower=-1, upper=1)

    @property
    def face_areas(self) -> Tensor:
        others_mask = math.range(self.shape['vector']) != math.range(dual(**self.shape['vector'].untyped_dict))
        result = math.exp(math.sum(math.log(self.size) * others_mask, 'vector'))
        return expand(result, dual(side='lower,upper'))  # ~vector

    @property
    def face_shape(self) -> Shape:
        return self.shape.without('vector') & dual(side='lower,upper') & dual(**self.shape['vector'].untyped_dict)

    @property
    def corners(self):
        to_face = self.face_normals[{'~side': 'upper'}] * math.rename_dims(self.half_size, 'vector', dual)
        lower_upper = math.meshgrid(math.dual, **{dim: [-1, 1] for dim in self.vector.item_names}, stack_dim=dual('vector'))  # (x=2, y=2, ... vector=x,y,...)
        to_corner = math.sum(lower_upper * to_face, '~vector')
        return self.center + to_corner

Ancestors

  • phi.geom._geom.Geometry

Subclasses

  • phi.geom._box.Box
  • phi.geom._box.Cuboid
  • phi.geom._grid.UniformGrid

Instance variables

prop boundary_elements : Dict[Any, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    raise NotImplementedError()
prop corners

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self):
    to_face = self.face_normals[{'~side': 'upper'}] * math.rename_dims(self.half_size, 'vector', dual)
    lower_upper = math.meshgrid(math.dual, **{dim: [-1, 1] for dim in self.vector.item_names}, stack_dim=dual('vector'))  # (x=2, y=2, ... vector=x,y,...)
    to_corner = math.sum(lower_upper * to_face, '~vector')
    return self.center + to_corner
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    others_mask = math.range(self.shape['vector']) != math.range(dual(**self.shape['vector'].untyped_dict))
    result = math.exp(math.sum(math.log(self.size) * others_mask, 'vector'))
    return expand(result, dual(side='lower,upper'))  # ~vector
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    return self.center + self.face_normals * self.half_size
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    unit_vectors = math.to_float(math.range(self.shape['vector']) == math.range(dual(**self.shape['vector'].untyped_dict)))
    vectors = math.rotate_vector(unit_vectors, self.rotation_matrix)
    return vectors * math.vec(dual('side'), lower=-1, upper=1)
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return self.shape.without('vector') & dual(side='lower,upper') & dual(**self.shape['vector'].untyped_dict)
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    return Cuboid(self.face_centers, self._half_size, self._rotation_matrix, size_variable=False)
prop half_size : phiml.math._tensors.Tensor
Expand source code
@property
def half_size(self) -> Tensor:
    raise NotImplementedError(self)
prop is_size_variable
Expand source code
@property
def is_size_variable(self):
    raise NotImplementedError(self)
prop lower : phiml.math._tensors.Tensor
Expand source code
@property
def lower(self) -> Tensor:
    raise NotImplementedError(self)
prop rotation_matrix : Optional[phiml.math._tensors.Tensor]
Expand source code
@property
def rotation_matrix(self) -> Optional[Tensor]:
    raise NotImplementedError(self)
prop shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self):
    raise NotImplementedError()
prop size : phiml.math._tensors.Tensor
Expand source code
@property
def size(self) -> Tensor:
    raise NotImplementedError(self)
prop upper : phiml.math._tensors.Tensor
Expand source code
@property
def upper(self) -> Tensor:
    raise NotImplementedError(self)
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return math.prod(self.size, 'vector')

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: Union[phiml.math._tensors.Tensor, tuple])

Computes the signed L-infinity norm (manhattan distance) from the location to the nearest side of the box. For an outside location l with the closest surface point s, the distance is max(abs(l - s)). For inside locations it is -max(abs(l - s)).

Args

location
float tensor of shape (batch_size, …, rank)

Returns

float tensor of shape (*location.shape[:-1], 1).

def bounding_radius(self)

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def box(self) ‑> phi.geom._box.Box
def center_representation(self, size_variable=True) ‑> phi.geom._box.Cuboid
def contains(self, other: BaseBox)

Tests if the other box lies fully inside this box.

def corner_representation(self) ‑> phi.geom._box.Box
def global_to_local(self, global_position: phiml.math._tensors.Tensor, scale=True, origin='lower') ‑> phiml.math._tensors.Tensor

Transform world-space coordinates into box-space coordinates.

Args

global_position
World-space coordinates.
scale
Whether to re-scale the output so that [0, 1] or [-1, 1] represent the box for origin='lower' or origin='center', respectively.
origin
'lower' or 'center'

Returns

Box-space coordinate Tensor

def largest(self, dim: Union[str, tuple, list, set, ForwardRef('Shape'), Callable]) ‑> phi.geom._box.BaseBox
def lies_inside(self, location: phiml.math._tensors.Tensor)

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def local_to_global(self, local_position, scale=True, origin='lower')
def project(self, *dimensions: str)

Project this box into a lower-dimensional space.

def push(self, positions: phiml.math._tensors.Tensor, outward: bool = True, shift_amount: float = 0) ‑> phiml.math._tensors.Tensor

Shifts positions either into or out of geometry.

Args

positions
Tensor holding positions to shift
outward
Flag for indicating inward (False) or outward (True) shift
shift_amount
Minimum distance between positions and surface after shifting.

Returns

Tensor holding shifted positions.

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def sample_uniform_surface(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor
def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._box.BaseBox

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def smallest(self, dim: Union[str, tuple, list, set, ForwardRef('Shape'), Callable]) ‑> phi.geom._box.BaseBox
class Box (lower: phiml.math._tensors.Tensor = None, upper: phiml.math._tensors.Tensor = None, **size: Union[float, phiml.math._tensors.Tensor, tuple, list, ForwardRef(None)])

Simple cuboid defined by location of lower and upper corner in physical space.

Boxes can be constructed either from two positional vector arguments (lower, upper) or by specifying the limits by dimension name as kwargs.

Examples

>>> Box(x=1, y=1)  # creates a two-dimensional unit box with `lower=(0, 0)` and `upper=(1, 1)`.
>>> Box(x=(None, 1), y=(0, None)  # creates a Box with `lower=(-inf, 0)` and `upper=(1, inf)`.

The slicing constructor was updated in version 2.2 and now requires the dimension order as the first argument.

>>> Box['x,y', 0:1, 0:1]  # creates a two-dimensional unit box with `lower=(0, 0)` and `upper=(1, 1)`.
>>> Box['x,y', :1, 0:]  # creates a Box with `lower=(-inf, 0)` and `upper=(1, inf)`.

Args

lower
physical location of lower corner
upper
physical location of upper corner
**size
Specify size by dimension, either as int or tuple containing (lower, upper).
Expand source code
class Box(BaseBox, metaclass=BoxType):
    """
    Simple cuboid defined by location of lower and upper corner in physical space.

    Boxes can be constructed either from two positional vector arguments `(lower, upper)` or by specifying the limits by dimension name as `kwargs`.

    Examples:
        >>> Box(x=1, y=1)  # creates a two-dimensional unit box with `lower=(0, 0)` and `upper=(1, 1)`.
        >>> Box(x=(None, 1), y=(0, None)  # creates a Box with `lower=(-inf, 0)` and `upper=(1, inf)`.

        The slicing constructor was updated in version 2.2 and now requires the dimension order as the first argument.

        >>> Box['x,y', 0:1, 0:1]  # creates a two-dimensional unit box with `lower=(0, 0)` and `upper=(1, 1)`.
        >>> Box['x,y', :1, 0:]  # creates a Box with `lower=(-inf, 0)` and `upper=(1, inf)`.
    """

    def __init__(self, lower: Tensor = None, upper: Tensor = None, **size: Optional[Union[float, Tensor, tuple, list]]):
        """
        Args:
          lower: physical location of lower corner
          upper: physical location of upper corner
          **size: Specify size by dimension, either as `int` or `tuple` containing (lower, upper).
        """
        if lower is not None:
            assert isinstance(lower, Tensor), f"lower must be a Tensor but got {type(lower)}"
            assert 'vector' in lower.shape, "lower must have a vector dimension"
            assert lower.vector.item_names is not None, "vector dimension of lower must list spatial dimension order"
            self._lower = lower
        if upper is not None:
            assert isinstance(upper, Tensor), f"upper must be a Tensor but got {type(upper)}"
            assert 'vector' in upper.shape, "lower must have a vector dimension"
            assert upper.vector.item_names is not None, "vector dimension of lower must list spatial dimension order"
            self._upper = upper
        else:
            lower = []
            upper = []
            for item in size.values():
                if isinstance(item, (tuple, list)):
                    assert len(item) == 2, f"Box kwargs must be either dim=upper or dim=(lower,upper) but got {item}"
                    lo, up = item
                    lower.append(lo)
                    upper.append(up)
                elif item is None:
                    lower.append(-INF)
                    upper.append(INF)
                else:
                    lower.append(0)
                    upper.append(item)
            lower = [-INF if l is None else l for l in lower]
            upper = [INF if u is None else u for u in upper]
            self._upper = math.wrap(upper, math.channel(vector=tuple(size.keys())))
            self._lower = math.wrap(lower, math.channel(vector=tuple(size.keys())))
        vector_shape = self._lower.shape & self._upper.shape
        self._lower = math.expand(self._lower, vector_shape)
        self._upper = math.expand(self._upper, vector_shape)
        if self.size.vector.item_names is None:
            warnings.warn("Creating a Box without item names prevents certain operations like project()", DeprecationWarning, stacklevel=2)
        self._shape = self._lower.shape & self._upper.shape

    def __getitem__(self, item):
        item = _keep_vector(slicing_dict(self, item))
        return Box(self._lower[item], self._upper[item])

    @staticmethod
    def __stack__(values: tuple, dim: Shape, **kwargs) -> 'Geometry':
        if all(isinstance(v, Box) for v in values):
            return NotImplemented  # stack attributes
        else:
            return Geometry.__stack__(values, dim, **kwargs)

    def without(self, dims: Tuple[str, ...]):
        remaining = list(self.shape.get_item_names('vector'))
        for dim in dims:
            if dim in remaining:
                remaining.remove(dim)
        return self.vector[remaining]

    def __variable_attrs__(self):
        return '_lower', '_upper'

    def __value_attrs__(self):
        return '_lower', '_upper'

    @property
    def shape(self):
        if self._lower is None or self._upper is None:
            return self._shape
        return self._lower.shape & self._upper.shape

    @property
    def lower(self):
        return self._lower

    @property
    def upper(self):
        return self._upper

    @property
    def size(self):
        return self.upper - self.lower

    @property
    def center(self):
        return 0.5 * (self.lower + self.upper)

    @property
    def half_size(self):
        return self.size * 0.5

    @property
    def rotation_matrix(self) -> Optional[Tensor]:
        return None

    @property
    def is_size_variable(self):
        raise False

    def at(self, center: Tensor) -> 'BaseBox':
        return Cuboid(center, self.half_size, self.rotation_matrix)

    def shifted(self, delta, **delta_by_dim) -> 'Box':
        return Box(self.lower + delta, self.upper + delta)

    def rotated(self, angle) -> 'Cuboid':
        return self.center_representation().rotated(angle)

    def __mul__(self, other):
        if not isinstance(other, Box):
            return NotImplemented
        lower = self._lower.vector.unstack(self.spatial_rank) + other._lower.vector.unstack(other.spatial_rank)
        upper = self._upper.vector.unstack(self.spatial_rank) + other._upper.vector.unstack(other.spatial_rank)
        names = self._upper.vector.item_names + other._upper.vector.item_names
        lower = math.stack(lower, math.channel(vector=names))
        upper = math.stack(upper, math.channel(vector=names))
        return Box(lower, upper)

    def bounding_half_extent(self):
        return self.half_size

    def __repr__(self):
        if self._lower is None or self._upper is None:  # traced
            return f"Box[traced, shape={self._shape}]"
        if self.shape.non_channel.volume == 1:
            item_names = self.size.vector.item_names
            if item_names:
                return f"Box({', '.join([f'{dim}=({lo}, {up})' for dim, lo, up in zip(item_names, self._lower, self._upper)])})"
            else:  # deprecated
                return 'Box[%s at %s]' % ('x'.join([str(x) for x in self.size.numpy().flatten()]), ','.join([str(x) for x in self.lower.numpy().flatten()]))
        else:
            return f'Box[shape={self.shape}]'

Ancestors

  • phi.geom._box.BaseBox
  • phi.geom._geom.Geometry

Instance variables

prop center

Center location in single channel dimension.

Expand source code
@property
def center(self):
    return 0.5 * (self.lower + self.upper)
prop half_size
Expand source code
@property
def half_size(self):
    return self.size * 0.5
prop is_size_variable
Expand source code
@property
def is_size_variable(self):
    raise False
prop lower
Expand source code
@property
def lower(self):
    return self._lower
prop rotation_matrix : Optional[phiml.math._tensors.Tensor]
Expand source code
@property
def rotation_matrix(self) -> Optional[Tensor]:
    return None
prop shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self):
    if self._lower is None or self._upper is None:
        return self._shape
    return self._lower.shape & self._upper.shape
prop size
Expand source code
@property
def size(self):
    return self.upper - self.lower
prop upper
Expand source code
@property
def upper(self):
    return self._upper

Methods

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._box.BaseBox

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self)

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def rotated(self, angle) ‑> phi.geom._box.Cuboid

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def shifted(self, delta, **delta_by_dim) ‑> phi.geom._box.Box

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
def without(self, dims: Tuple[str, ...])
class Cuboid (center: phiml.math._tensors.Tensor = 0, half_size: Union[phiml.math._tensors.Tensor, float] = None, rotation: Optional[phiml.math._tensors.Tensor] = None, size_variable=True, **size: Union[phiml.math._tensors.Tensor, float])

Box specified by center position and half size.

Args

center
Center position
half_size
Half-size of the cuboid as vector or scalar
rotation
Rotation angle(s) or rotation matrix.
**size
Alternative way of specifying the size. If used, half_size must not be specified.
Expand source code
class Cuboid(BaseBox):
    """Box specified by center position and half size."""

    def __init__(self,
                 center: Tensor = 0,
                 half_size: Union[float, Tensor] = None,
                 rotation: Optional[Tensor] = None,
                 size_variable=True,
                 **size: Union[float, Tensor]):
        """
        Args:
            center: Center position
            half_size: Half-size of the cuboid as vector or scalar
            rotation: Rotation angle(s) or rotation matrix.
            **size: Alternative way of specifying the size. If used, `half_size` must not be specified.
        """
        if half_size is not None:
            assert isinstance(half_size, Tensor), "half_size must be a Tensor"
            assert 'vector' in half_size.shape, f"Cuboid size must have a 'vector' dimension."
            assert half_size.shape.get_item_names('vector') is not None, f"Vector dimension must list spatial dimensions as item names. Use the syntax Cuboid(x=x, y=y) to assign names."
            self._half_size = half_size
        else:
            self._half_size = math.wrap(tuple(size.values()), math.channel(vector=tuple(size.keys()))) * 0.5
        center = wrap(center)
        if 'vector' not in center.shape or center.shape.get_item_names('vector') is None:
            center = math.expand(center, channel(self._half_size))
        self._center = center
        self._rotation_matrix = None if rotation is None else math.rotation_matrix(rotation)
        self._size_variable = size_variable

    def __repr__(self):
        return f"Cuboid(center={self._center}, half_size={self._half_size})"

    def __getitem__(self, item) -> 'Cuboid':
        item = _keep_vector(slicing_dict(self, item))
        rotation = self._rotation_matrix[item] if self._rotation_matrix is not None else None
        return Cuboid(self._center[item], self._half_size[item], rotation, size_variable=self._size_variable)

    @staticmethod
    def __stack__(values: tuple, dim: Shape, **kwargs) -> 'Geometry':
        if all(isinstance(v, Cuboid) for v in values):
            size_variable = any([c._size_variable for c in values])
            if any(v._rotation_matrix is not None for v in values):
                matrices = [v._rotation_matrix for v in values]
                if any(m is None for m in matrices):
                    any_angle = math.rotation_angles([m for m in matrices if m is not None][0])
                    unit_matrix = math.rotation_matrix(any_angle * 0)
                    matrices = [unit_matrix if m is None else m for m in matrices]
                rotation = stack(matrices, dim, **kwargs)
            else:
                rotation = None
            return Cuboid(stack([v.center for v in values], dim, **kwargs), stack([v.half_size for v in values], dim, **kwargs), rotation, size_variable=size_variable)
        else:
            return Geometry.__stack__(values, dim, **kwargs)

    def __variable_attrs__(self):
        return ('_center', '_half_size', '_rotation_matrix') if self._size_variable else ('_center', '_rotation_matrix')

    def __value_attrs__(self):
        return '_center',

    @property
    def center(self):
        return self._center

    @property
    def half_size(self):
        return self._half_size

    @property
    def shape(self):
        if self._center is None or self._half_size is None:
            return None
        return self._center.shape & self._half_size.shape

    @property
    def size(self):
        return 2 * self._half_size

    @property
    def lower(self):
        return self._center - self._half_size

    @property
    def upper(self):
        return self._center + self._half_size

    @property
    def rotation_matrix(self) -> Optional[Tensor]:
        return self._rotation_matrix

    @property
    def is_size_variable(self):
        return self._size_variable

    def at(self, center: Tensor) -> 'Cuboid':
        return Cuboid(center, self.half_size, self.rotation_matrix, size_variable=self._size_variable)

    def rotated(self, angle) -> 'Cuboid':
        if self._rotation_matrix is None:
            return Cuboid(self._center, self._half_size, angle, size_variable=self._size_variable)
        else:
            matrix = self._rotation_matrix @ (angle if dual(angle) else math.rotation_matrix(angle))
            return Cuboid(self._center, self._half_size, matrix, size_variable=self._size_variable)

    def bounding_half_extent(self) -> Tensor:
        if self._rotation_matrix is not None:
            to_face = self.face_normals[{'~side': 0}] * math.rename_dims(self._half_size, 'vector', dual)
            return math.sum(abs(to_face), '~vector')
        return self.half_size

    def lies_inside(self, location: Tensor) -> Tensor:
        location = self.global_to_local(location, scale=False, origin='center')  # scale can only be performed for finite sizes
        bool_inside = abs(location) <= self._half_size
        bool_inside = math.all(bool_inside, 'vector')
        bool_inside = math.any(bool_inside, self.shape.instance - instance(location))  # union for instance dimensions
        return bool_inside

Ancestors

  • phi.geom._box.BaseBox
  • phi.geom._geom.Geometry

Instance variables

prop center

Center location in single channel dimension.

Expand source code
@property
def center(self):
    return self._center
prop half_size
Expand source code
@property
def half_size(self):
    return self._half_size
prop is_size_variable
Expand source code
@property
def is_size_variable(self):
    return self._size_variable
prop lower
Expand source code
@property
def lower(self):
    return self._center - self._half_size
prop rotation_matrix : Optional[phiml.math._tensors.Tensor]
Expand source code
@property
def rotation_matrix(self) -> Optional[Tensor]:
    return self._rotation_matrix
prop shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self):
    if self._center is None or self._half_size is None:
        return None
    return self._center.shape & self._half_size.shape
prop size
Expand source code
@property
def size(self):
    return 2 * self._half_size
prop upper
Expand source code
@property
def upper(self):
    return self._center + self._half_size

Methods

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._box.Cuboid

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle) ‑> phi.geom._box.Cuboid

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

class Geometry

Abstract base class for N-dimensional shapes.

Main implementing classes:

  • Sphere
  • box family: box (generator), Box, Cuboid, BaseBox

All geometry objects support batching. Thereby any parameter defining the geometry can be varied along arbitrary batch dims. All batch dimensions are listed in Geometry.shape.

Property getters (@property, such as shape), save for getters, must not depend on any variables marked as variable via __variable_attrs__() as these may be None during tracing. Equality checks must also take this into account.

Expand source code
class Geometry:
    """
    Abstract base class for N-dimensional shapes.

    Main implementing classes:

    * Sphere
    * box family: box (generator), Box, Cuboid, BaseBox

    All geometry objects support batching.
    Thereby any parameter defining the geometry can be varied along arbitrary batch dims.
    All batch dimensions are listed in Geometry.shape.

    Property getters (`@property`, such as `shape`), save for getters, must not depend on any variables marked as *variable* via `__variable_attrs__()` as these may be `None` during tracing.
    Equality checks must also take this into account.
    """

    @property
    def center(self) -> Tensor:
        """
        Center location in single channel dimension.
        """
        raise NotImplementedError(self.__class__)

    @property
    def shape(self) -> Shape:
        """
        The `shape` of a `Geometry` consists of the following dimensions:

        * A single *channel* dimension called `'vector'` specifying the physical space
        * Instance dimensions denote that this geometry consists of multiple copies in the same space
        * Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
        * Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
        """
        raise NotImplementedError(self.__class__)

    @property
    def volume(self) -> Tensor:
        """
        `phi.math.Tensor` representing the volume of each element.
        The result retains batch, spatial and instance dimensions.
        """
        raise NotImplementedError(self.__class__)

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError(self.__class__)

    @property
    def face_centers(self) -> Tensor:
        """
        Center of face connecting a pair of cells. Shape `(elements, ~, vector)`.
        Here, `~` represents arbitrary internal dual dimensions, such as `~staggered_direction` or `~elements`.
        Returns 0-vectors for unconnected cells.
        """
        raise NotImplementedError(self.__class__)

    @property
    def face_areas(self) -> Tensor:
        """
        Area of face connecting a pair of cells. Shape `(elements, ~)`.
        Returns 0 for unconnected cells.
        """
        raise NotImplementedError(self.__class__)

    @property
    def face_normals(self) -> Tensor:
        """
        Normal vectors of cell faces, including boundary faces. Shape `(elements, ~, vector)`.
        For meshes, The vectors point out of the primal cells and into the dual cells.

        Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.
        """
        raise NotImplementedError(self.__class__)

    @property
    def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
        """
        Slices on the primal dimensions to mark boundary elements.
        Grids and meshes have no boundary elements and return `{}`.
        Dynamic graphs can define boundary elements for obstacles and walls.

        Returns:
            Map from `name` to slicing `dict`.
        """
        raise NotImplementedError(self.__class__)

    @property
    def boundary_faces(self) -> Dict[str, Dict[str, slice]]:
        """
        Slices on the dual dimensions to mark boundary faces.

        Regular grids use the keys (dim, is_upper) to identify boundaries.
        Unstructured meshes use string identifiers for the boundaries.
        Dynamic graphs return slices along the dual dimensions.

        Returns:
            Map from `name` to slicing `dict`.
        """
        raise NotImplementedError(self.__class__)

    @property
    def face_shape(self) -> Shape:
        """
        Returns:
            Full Shape to identify each face of this `Geometry`, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element.
            If this `Geometry` has no faces, returns an empty `Shape`.
        """
        return None

    @property
    def sets(self) -> Dict[str, Shape]:
        if self.face_shape and self.face_shape != self.shape and self.face_shape.volume > 0:
            return {'center': non_batch(self)-'vector', 'face': self.face_shape.non_batch}
        else:
            return {'center': non_batch(self)-'vector'}

    def get_points(self, set_key: str) -> Tensor:
        if set_key == 'center':
            return self.center
        elif set_key == 'face':
            return self.face_centers
        else:
            raise ValueError(f"Unknown set: '{set_key}'")

    def get_boundary(self, set_key: str) -> Dict[str, Dict[str, slice]]:
        if set_key == 'center':
            return self.boundary_elements
        elif set_key == 'face':
            return self.boundary_faces
        else:
            raise ValueError(f"Unknown set: '{set_key}'")

    @property
    def corners(self) -> Tensor:
        """
        Returns:
            Corner locations as `phiml.math.Tensor`.
            Corners belonging to one object or cell are listed along dual dimensions.
            If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.
        """
        raise NotImplementedError(self.__class__)

    def integrate_surface(self, face_values: Tensor, divide_volume=False) -> Tensor:
        """
        Multiplies `values´ by the corresponding face area, computes the sum over all faces and divides by the cell volume.
        ∑ values * A.

        Args:
            face_values: Values sampled at the face centers.
            divide_volume: Whether to divide by the cell `volume´

        Returns:
            `Tensor` of values sampled at the centroids.
        """
        result = math.sum(face_values * self.face_areas, self.face_shape.dual)
        return result / self.volume if divide_volume else result

    def integrate_flux(self, flux: Tensor, divide_volume=False) -> Tensor:
        assert 'vector' in flux.shape, f"flux must have a 'vector' dimension but got {flux.shape}"
        result = math.sum(flux.vector @ (self.face_normals * self.face_areas).vector, self.face_shape.dual)
        return result / self.volume if divide_volume else result

    # def resample_to_faces(self, values: Tensor, boundary: Extrapolation, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def resample_to_centers(self, values: Tensor, boundary: Extrapolation, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def centered_gradient_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def staggered_gradient_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def divergence_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def laplace_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def centered_curl_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)
    #
    # def staggered_curl_of(self, values: Tensor, boundary: Extrapolation, dims=None, **kwargs):
    #     raise NotImplementedError(self.__class__)

    def unstack(self, dimension: str) -> tuple:
        """
        Unstacks this Geometry along the given dimension.
        The shapes of the returned geometries are reduced by `dimension`.

        Args:
            dimension: dimension along which to unstack

        Returns:
            geometries: tuple of length equal to `geometry.shape.get_size(dimension)`
        """
        warnings.warn(f"Geometry.unstack() is deprecated. Use math.unstack(geometry) instead.", DeprecationWarning)
        return math.unstack(self, dimension)

    @property
    def spatial_rank(self) -> int:
        """ Number of spatial dimensions of the geometry, 1 = 1D, 2 = 2D, 3 = 3D, etc. """
        return self.shape.get_size('vector')

    def lies_inside(self, location: Tensor) -> Tensor:
        """
        Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

        When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

        Args:
          location: float tensor of shape (batch_size, ..., rank)

        Returns:
          bool tensor of shape (*location.shape[:-1], 1).

        """
        raise NotImplementedError(self.__class__)

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        """
        Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

        Args:
            location: `Tensor` with a single channel dimension called vector. Can have arbitrary other dimensions.

        Returns:
            signed_distance: Scalar signed distance from `location`  to the closest point on the surface.
                Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
            delta: Vector-valued distance vector from `location` to the closest point on the surface.
            normal: Closest surface normal vector.
            offset: Min distance of a surface-tangential plane from 0 as a scalar.
            face_index: (Optional) An index vector pointing at the closest face.
        """
        raise NotImplementedError(self.__class__)

    def approximate_signed_distance(self, location: Tensor) -> Tensor:
        """
        Computes the approximate distance from location to the surface of the geometry.
        Locations outside return positive values, inside negative values and zero exactly at the boundary.

        The exact distance metric used depends on the geometry.
        The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry.
        The distance metric is differentiable and its gradients are bounded at every point in space.

        When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned.
        This also holds for negative distances.

        Args:
            location: `Tensor` with one channel dim `vector` matching the geometry's `vector` dim.

        Returns:
            Float `Tensor`
        """
        raise NotImplementedError(self.__class__)

    def approximate_fraction_inside(self, other_geometry: 'Geometry', balance: Union[Tensor, Number] = 0.5) -> Tensor:
        """
        Computes the approximate overlap between the geometry and a small other geometry.
        Returns 1.0 if `other_geometry` is fully enclosed in this geometry and 0.0 if there is no overlap.
        Close to the surface of this geometry, the fraction filled is differentiable w.r.t. the location and size of `other_geometry`.

        To call this method on batches of geometries of same shape, pass a batched Geometry instance.
        The result tensor will match the batch shape of `other_geometry`.

        The result may only be accurate in special cases.
        The given geometries may be approximated as spheres or boxes using `bounding_radius()` and `bounding_half_extent()`.

        The default implementation of this method approximates other_geometry as a Sphere and computes the fraction using `approximate_signed_distance()`.

        Args:
            other_geometry: `Geometry` or geometry batch for which to compute the overlap with `self`.
            balance: Mid-level between 0 and 1, default 0.5.
                This value is returned when exactly half of `other_geometry` lies inside `self`.
                `0.5 < balance <= 1` makes `self` seem larger while `0 <= balance < 0.5`makes `self` seem smaller.

        Returns:
          fraction of cell volume lying inside the geometry. float tensor of shape (other_geometry.batch_shape, 1).

        """
        assert isinstance(other_geometry, Geometry)
        radius = other_geometry.bounding_radius()
        location = other_geometry.center
        distance = self.approximate_signed_distance(location)
        inside_fraction = balance - distance / radius
        inside_fraction = math.clip(inside_fraction, 0, 1)
        return inside_fraction

    def push(self, positions: Tensor, outward: bool = True, shift_amount: float = 0) -> Tensor:
        """
        Shifts positions either into or out of geometry.

        Args:
            positions: Tensor holding positions to shift
            outward: Flag for indicating inward (False) or outward (True) shift
            shift_amount: Minimum distance between positions and surface after shifting.

        Returns:
            Tensor holding shifted positions.
        """
        from ._geom_ops import expel
        return expel(self, positions, min_separation=shift_amount, invert=not outward)

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        """
        Samples uniformly distributed random points inside this volume.

        Args:
            *shape: How many points to sample per individual geometry.

        Returns:
            `Tensor` containing all dimensions from `Geometry.shape`, `shape` as well as a `channel` dimension `vector` matching the dimensionality of this `Geometry`.
        """
        raise NotImplementedError(self.__class__)

    def bounding_radius(self) -> Tensor:
        """
        Returns the radius of a Sphere object that fully encloses this geometry.
        The sphere is centered at the center of this geometry.

        If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part.
        If these dims are not present on the result, all parts are assumed to have the same bounds.
        """
        raise NotImplementedError(self.__class__)

    def bounding_half_extent(self) -> Tensor:
        """
        The bounding half-extent sets a limit on the outer-most point for each coordinate axis.
        Each component is non-negative.

        Let the bounding half-extent have value `e` in dimension `d` (`extent[...,d] = e`).
        Then, no point of the geometry lies further away from its center point than `e` along `d` (in both axis directions).

        If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part.
        If these dims are not present on the result, all parts are assumed to have the same bounds.
        """
        raise NotImplementedError(self.__class__)

    def bounding_box(self) -> 'BaseBox':
        """
        Returns the approximately smallest axis-aligned box that contains this `Geometry`.
        The center of the box may not be equal to `self.center`.

        Returns:
            `Box` or `Cuboid` that fully contains this `Geometry`.
        """
        center = self.center
        half = self.bounding_half_extent()
        min_vec = math.min(center - half, dim=center.shape.non_batch.non_channel)
        max_vec = math.max(center + half, dim=center.shape.non_batch.non_channel)
        from ._box import Box
        return Box(min_vec, max_vec)

    def shifted(self, delta: Tensor) -> 'Geometry':
        """
        Returns a translated version of this geometry.

        See Also:
            `Geometry.at()`.

        Args:
          delta: direction vector
          delta: Tensor:

        Returns:
          Geometry: shifted geometry

        """
        return self.at(self.center + delta)

    def at(self, center: Tensor) -> 'Geometry':
        """
        Returns a copy of this `Geometry` with the center at `center`.
        This is equal to calling `self @ center`.

        See Also:
            `Geometry.shifted()`.

        Args:
            center: New center as `Tensor`.

        Returns:
            `Geometry`.
        """
        raise NotImplementedError(self.__class__)

    def __matmul__(self, other):
        if isinstance(other, (Tensor, float, int)):
            return self.at(other)
        return NotImplemented

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        """
        Returns a rotated version of this geometry.
        The geometry is rotated about its center point.

        Args:
            angle: Delta rotation.
                Either

                * Angle(s): scalar angle in 2d or euler angles along `vector` in 3D or higher.
                * Matrix: d⨯d rotation matrix

        Returns:
            Rotated `Geometry`
        """
        raise NotImplementedError(self.__class__)

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        """
        Scales each individual geometry by `factor`.
        The individual `center` points act as pivots for the operation.

        Args:
            factor:

        Returns:

        """
        raise NotImplementedError(self.__class__)

    def __invert__(self):
        return InvertedGeometry(self)

    def __eq__(self, other):
        """
        Slow equality check.
        Unlike `==`, this method compares all tensor elements to check whether they are equal.
        Use `==` for a faster check which only checks whether the referenced tensors are the same.

        See Also:
            `shallow_equals()`
        """
        def tensor_equality(a, b):
            if a is None or b is None:
                return True  # stored mode, tensors unavailable
            return math.close(a, b, rel_tolerance=1e-5, equal_nan=True)
        differences = find_differences(self, other, attr_type=variable_attributes, tensor_equality=tensor_equality)
        return not differences

    def shallow_equals(self, other):
        """
        Quick equality check.
        May return `False` even if `other == self`.
        However, if `True` is returned, the geometries are guaranteed to be equal.

        The `shallow_equals()` check does not compare all tensor elements but merely checks whether the same tensors are referenced.
        """
        differences = find_differences(self, other, compare_tensors_by_id=True)
        return not differences

    @staticmethod
    def __stack__(values: tuple, dim: Shape, **kwargs) -> 'Geometry':
        if all(type(v) == type(values[0]) for v in values):
            return NotImplemented  # let attributes be stacked
        else:
            from ._geom_ops import GeometryStack
            set_op = kwargs.get('set_op')
            return GeometryStack(math.layout(values, dim), set_op)

    def __flatten__(self, flat_dim: Shape, flatten_batch: bool, **kwargs) -> 'Geometry':
        dims = self.shape.without('vector')
        if not flatten_batch:
            dims = dims.non_batch
        return math.pack_dims(self, dims, flat_dim, **kwargs)

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return id(self.__class__) + hash(self.shape)

    def __repr__(self):
        return f"{self.__class__.__name__}{self.shape}"

    def __getitem__(self, item):
        raise NotImplementedError
        # assert isinstance(item, dict), "Index must be dict of type {dim: slice/int}."
        # item = {dim: sel for dim, sel in item.items() if dim != 'vector'}
        # attrs = {a: getattr(self, a)[item] for a in variable_attributes(self)}
        # return copy_with(self, **attrs)

    def __getattr__(self, name: str) -> BoundDim:
        return BoundDim(self, name)

Subclasses

  • phi.geom._box.BaseBox
  • phi.geom._geom.InvertedGeometry
  • phi.geom._geom.NoGeometry
  • phi.geom._geom.Point
  • phi.geom._geom_ops.GeometryStack
  • phi.geom._graph.Graph
  • phi.geom._heightmap.Heightmap
  • phi.geom._mesh.Mesh
  • phi.geom._sdf.SDF
  • phi.geom._sdf_grid.SDFGrid
  • phi.geom._sphere.Sphere
  • phi.geom._transform._EmbeddedGeometry

Instance variables

prop boundary_elements : Dict[str, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
    """
    Slices on the primal dimensions to mark boundary elements.
    Grids and meshes have no boundary elements and return `{}`.
    Dynamic graphs can define boundary elements for obstacles and walls.

    Returns:
        Map from `name` to slicing `dict`.
    """
    raise NotImplementedError(self.__class__)
prop boundary_faces : Dict[str, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[str, Dict[str, slice]]:
    """
    Slices on the dual dimensions to mark boundary faces.

    Regular grids use the keys (dim, is_upper) to identify boundaries.
    Unstructured meshes use string identifiers for the boundaries.
    Dynamic graphs return slices along the dual dimensions.

    Returns:
        Map from `name` to slicing `dict`.
    """
    raise NotImplementedError(self.__class__)
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    """
    Center location in single channel dimension.
    """
    raise NotImplementedError(self.__class__)
prop corners : phiml.math._tensors.Tensor

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self) -> Tensor:
    """
    Returns:
        Corner locations as `phiml.math.Tensor`.
        Corners belonging to one object or cell are listed along dual dimensions.
        If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.
    """
    raise NotImplementedError(self.__class__)
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    """
    Area of face connecting a pair of cells. Shape `(elements, ~)`.
    Returns 0 for unconnected cells.
    """
    raise NotImplementedError(self.__class__)
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    """
    Center of face connecting a pair of cells. Shape `(elements, ~, vector)`.
    Here, `~` represents arbitrary internal dual dimensions, such as `~staggered_direction` or `~elements`.
    Returns 0-vectors for unconnected cells.
    """
    raise NotImplementedError(self.__class__)
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    """
    Normal vectors of cell faces, including boundary faces. Shape `(elements, ~, vector)`.
    For meshes, The vectors point out of the primal cells and into the dual cells.

    Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.
    """
    raise NotImplementedError(self.__class__)
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    """
    Returns:
        Full Shape to identify each face of this `Geometry`, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element.
        If this `Geometry` has no faces, returns an empty `Shape`.
    """
    return None
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError(self.__class__)
prop sets : Dict[str, phiml.math._shape.Shape]
Expand source code
@property
def sets(self) -> Dict[str, Shape]:
    if self.face_shape and self.face_shape != self.shape and self.face_shape.volume > 0:
        return {'center': non_batch(self)-'vector', 'face': self.face_shape.non_batch}
    else:
        return {'center': non_batch(self)-'vector'}
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    """
    The `shape` of a `Geometry` consists of the following dimensions:

    * A single *channel* dimension called `'vector'` specifying the physical space
    * Instance dimensions denote that this geometry consists of multiple copies in the same space
    * Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
    * Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
    """
    raise NotImplementedError(self.__class__)
prop spatial_rank : int

Number of spatial dimensions of the geometry, 1 = 1D, 2 = 2D, 3 = 3D, etc.

Expand source code
@property
def spatial_rank(self) -> int:
    """ Number of spatial dimensions of the geometry, 1 = 1D, 2 = 2D, 3 = 3D, etc. """
    return self.shape.get_size('vector')
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    """
    `phi.math.Tensor` representing the volume of each element.
    The result retains batch, spatial and instance dimensions.
    """
    raise NotImplementedError(self.__class__)

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_fraction_inside(self, other_geometry: Geometry, balance: Union[phiml.math._tensors.Tensor, numbers.Number] = 0.5) ‑> phiml.math._tensors.Tensor

Computes the approximate overlap between the geometry and a small other geometry. Returns 1.0 if other_geometry is fully enclosed in this geometry and 0.0 if there is no overlap. Close to the surface of this geometry, the fraction filled is differentiable w.r.t. the location and size of other_geometry.

To call this method on batches of geometries of same shape, pass a batched Geometry instance. The result tensor will match the batch shape of other_geometry.

The result may only be accurate in special cases. The given geometries may be approximated as spheres or boxes using bounding_radius() and bounding_half_extent().

The default implementation of this method approximates other_geometry as a Sphere and computes the fraction using approximate_signed_distance().

Args

other_geometry
Geometry or geometry batch for which to compute the overlap with self.
balance
Mid-level between 0 and 1, default 0.5. This value is returned when exactly half of other_geometry lies inside self. 0.5 < balance <= 1 makes self seem larger while 0 <= balance < 0.5makes self seem smaller.

Returns

fraction of cell volume lying inside the geometry. float tensor of shape (other_geometry.batch_shape, 1).

def approximate_signed_distance(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_box(self)

Returns the approximately smallest axis-aligned box that contains this Geometry. The center of the box may not be equal to self.center.

Returns

Box or Cuboid that fully contains this Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def get_boundary(self, set_key: str) ‑> Dict[str, Dict[str, slice]]
def get_points(self, set_key: str) ‑> phiml.math._tensors.Tensor
def integrate_flux(self, flux: phiml.math._tensors.Tensor, divide_volume=False) ‑> phiml.math._tensors.Tensor
def integrate_surface(self, face_values: phiml.math._tensors.Tensor, divide_volume=False) ‑> phiml.math._tensors.Tensor

Multiplies `values´ by the corresponding face area, computes the sum over all faces and divides by the cell volume. ∑ values * A.

Args

face_values
Values sampled at the face centers.
divide_volume
Whether to divide by the cell `volume´

Returns

Tensor of values sampled at the centroids.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def push(self, positions: phiml.math._tensors.Tensor, outward: bool = True, shift_amount: float = 0) ‑> phiml.math._tensors.Tensor

Shifts positions either into or out of geometry.

Args

positions
Tensor holding positions to shift
outward
Flag for indicating inward (False) or outward (True) shift
shift_amount
Minimum distance between positions and surface after shifting.

Returns

Tensor holding shifted positions.

def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def shallow_equals(self, other)

Quick equality check. May return False even if other == self. However, if True is returned, the geometries are guaranteed to be equal.

The shallow_equals() check does not compare all tensor elements but merely checks whether the same tensors are referenced.

def shifted(self, delta: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
def unstack(self, dimension: str) ‑> tuple

Unstacks this Geometry along the given dimension. The shapes of the returned geometries are reduced by dimension.

Args

dimension
dimension along which to unstack

Returns

geometries
tuple of length equal to geometry.shape.get_size(dimension)
class GeometryException (*args, **kwargs)

Raised when an operation is fundamentally not possible for a Geometry. Possible causes:

  • Trying to get the interior of a non-surface Geometry
  • Trying to get the surface of a point-like Geometry
Expand source code
class GeometryException(BaseException):
    """
    Raised when an operation is fundamentally not possible for a `Geometry`.
    Possible causes:

    * Trying to get the interior of a non-surface `Geometry`
    * Trying to get the surface of a point-like `Geometry`
    """

Ancestors

  • builtins.BaseException
class Graph (nodes: Union[phiml.math._tensors.Tensor, phi.geom._geom.Geometry], edges: phiml.math._tensors.Tensor, boundary: Dict[str, Dict[str, slice]], deltas: Optional[phiml.math._tensors.Tensor] = None, distances: Optional[phiml.math._tensors.Tensor] = None, bounding_distance: phiml.math._tensors.Tensor | float | None = None)

A graph consists of multiple geometry nodes and corresponding edge information.

Edges are stored as a Tensor with the same axes ad geometry plus their dual counterparts. Additional dimensions can be added to edges to store vector-valued connectivity weights.

Create a graph where nodes are connected by edges.

Args

nodes
Geometry collection or Tensor to denote points.
edges
Edge weight matrix. Must have the instance and spatial dims of nodes plus their dual counterparts.
boundary
Marks ranges of nodes as boundary elements.
deltas
(Optional) Pre-computed position difference matrix.
distances
(Optional) Pre-computed distance matrix.
bounding_distance
(Optional) Pre-computed distance bounds. No distance is larger than this value. If True, will be computed now, if False, will not be computed.
Expand source code
class Graph(Geometry):
    """
    A graph consists of multiple geometry nodes and corresponding edge information.

    Edges are stored as a Tensor with the same axes ad `geometry` plus their dual counterparts.
    Additional dimensions can be added to `edges` to store vector-valued connectivity weights.
    """

    def __init__(self,
                 nodes: Union[Geometry, Tensor],
                 edges: Tensor,
                 boundary: Dict[str, Dict[str, slice]],
                 deltas: Optional[Tensor] = None,
                 distances: Optional[Tensor] = None,
                 bounding_distance: Tensor | float | None = None):
        """
        Create a graph where `nodes` are connected by `edges`.

        Args:
            nodes: `Geometry` collection or `Tensor` to denote points.
            edges: Edge weight matrix. Must have the instance and spatial dims of `nodes` plus their dual counterparts.
            boundary: Marks ranges of nodes as boundary elements.
            deltas: (Optional) Pre-computed position difference matrix.
            distances: (Optional) Pre-computed distance matrix.
            bounding_distance: (Optional) Pre-computed distance bounds. No distance is larger than this value. If `True`, will be computed now, if `False`, will not be computed.
        """
        assert isinstance(nodes, Geometry), f"nodes must be a Geometry  but got {nodes}"
        node_dims = non_batch(nodes).non_channel
        assert node_dims in edges.shape and edges.shape.dual.rank == node_dims.rank, f"edges must contain all node dims {node_dims} as primal and dual but got {edges.shape}"
        self._nodes: Geometry = nodes if isinstance(nodes, Geometry) else Point(nodes)
        self._edges = edges
        self._boundary = boundary
        self._deltas = deltas
        self._distances = distances
        self._connectivity = math.tensor_like(edges, 1) if math.is_sparse(edges) else (edges != 0) & ~math.is_nan(edges)
        if isinstance(bounding_distance, bool):
            self._bounding_distance = math.max(self._distances) if bounding_distance else None
        else:
            self._bounding_distance = bounding_distance

    def __variable_attrs__(self):
        return '_nodes', '_edges', '_deltas', '_distances', '_connectivity'

    def __value_attrs__(self):
        return '_nodes',

    @property
    def edges(self):
        return self._edges

    @property
    def connectivity(self) -> Tensor:
        return self._connectivity

    @property
    def nodes(self) -> Geometry:
        return self._nodes

    def as_points(self):
        return Graph(Point(self._nodes.center), self._edges, self._boundary, self._deltas, self._distances, self._bounding_distance)

    @property
    def deltas(self):
        return self._deltas

    @property
    def unit_deltas(self):
        return math.safe_div(self._deltas, self._distances)

    @property
    def distances(self):
        return self._distances

    @property
    def bounding_distance(self) -> Optional[Tensor]:
        return self._bounding_distance

    @property
    def center(self) -> Tensor:
        return self._nodes.center

    @property
    def shape(self) -> Shape:
        return self._nodes.shape

    @property
    def volume(self) -> Tensor:
        return self._nodes.volume

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError

    @property
    def face_centers(self) -> Tensor:
        raise NotImplementedError

    @property
    def face_areas(self) -> Tensor:
        raise NotImplementedError

    @property
    def face_normals(self) -> Tensor:
        raise NotImplementedError

    @property
    def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
        return self._boundary

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        raise NotImplementedError  # connections between boundary elements

    @property
    def face_shape(self) -> Shape:
        return non_batch(self._edges).non_channel

    def lies_inside(self, location: Tensor) -> Tensor:
        raise NotImplementedError

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        raise NotImplementedError

    def approximate_signed_distance(self, location: Tensor) -> Tensor:
        raise NotImplementedError

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def bounding_radius(self) -> Tensor:
        return self._nodes.bounding_radius()

    def bounding_half_extent(self) -> Tensor:
        return self._nodes.bounding_half_extent()

    def at(self, center: Tensor) -> 'Geometry':
        raise NotImplementedError("Changing the node positions of a Graph is not supported as it would invalidate distances.")
        # warnings.warn("Changing the node positions of a graph triggers re-evaluation of distances.", RuntimeWarning, stacklevel=2)
        # return Graph(self.nodes.at(center), self._edges, self._boundary, bounding_distance=self._bounding_distance is not None)

    def shifted(self, delta: Tensor) -> 'Geometry':
        if non_batch(delta).non_channel.only(self._nodes.shape) and self._deltas is not None:  # shift varies between elements
            raise NotImplementedError("Shifting the node positions of a Graph is not supported as it would invalidate distances.")
        return Graph(self.nodes.shifted(delta), self._edges, self._boundary, deltas=self._deltas, distances=self._distances, bounding_distance=self._bounding_distance is not None)

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError

    def __getitem__(self, item):
        item = slicing_dict(self, item)
        node_dims = non_batch(self._nodes).non_channel
        edge_sel = {}
        for i, (dim, sel) in enumerate(item.items()):
            if dim in node_dims:
                dual_dim = '~' + dim
                if dual_dim not in self._edges.shape:
                    dual_dim = dual(self._edges).shape.names[i]
                edge_sel[dim] = edge_sel[dual_dim] = sel
            elif dim in batch(self):
                edge_sel[dim] = sel
        deltas = self._deltas[edge_sel] if self._deltas is not None else None
        distances = self._distances[edge_sel] if self._distances is not None else None
        bounding_distance = self._bounding_distance[item] if self._bounding_distance is not None else None
        return Graph(self._nodes[item], self._edges[edge_sel], self._boundary, deltas, distances, bounding_distance)

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[str, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
    return self._boundary
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    raise NotImplementedError  # connections between boundary elements
prop bounding_distance : Optional[phiml.math._tensors.Tensor]
Expand source code
@property
def bounding_distance(self) -> Optional[Tensor]:
    return self._bounding_distance
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._nodes.center
prop connectivity : phiml.math._tensors.Tensor
Expand source code
@property
def connectivity(self) -> Tensor:
    return self._connectivity
prop deltas
Expand source code
@property
def deltas(self):
    return self._deltas
prop distances
Expand source code
@property
def distances(self):
    return self._distances
prop edges
Expand source code
@property
def edges(self):
    return self._edges
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    raise NotImplementedError
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    raise NotImplementedError
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    raise NotImplementedError
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return non_batch(self._edges).non_channel
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError
prop nodes : phi.geom._geom.Geometry
Expand source code
@property
def nodes(self) -> Geometry:
    return self._nodes
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return self._nodes.shape
prop unit_deltas
Expand source code
@property
def unit_deltas(self):
    return math.safe_div(self._deltas, self._distances)
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return self._nodes.volume

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def as_points(self)
def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def shifted(self, delta: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
class Heightmap (height: phiml.math._tensors.Tensor, bounds: phi.geom._box.Box, max_dist: Union[phiml.math._tensors.Tensor, float], fill_below: Union[bool, phiml.math._tensors.Tensor] = True, extrapolation: Union[float, str, phiml.math.extrapolation.Extrapolation] = None, faces=None)

Abstract base class for N-dimensional shapes.

Main implementing classes:

  • Sphere
  • box family: box (generator), Box, Cuboid, BaseBox

All geometry objects support batching. Thereby any parameter defining the geometry can be varied along arbitrary batch dims. All batch dimensions are listed in Geometry.shape.

Property getters (@property, such as shape), save for getters, must not depend on any variables marked as variable via __variable_attrs__() as these may be None during tracing. Equality checks must also take this into account.

Args

height
Heightmap Tensor of absolute (world-space) height values. Scalar height values on a d-1 dimensional grid.
bounds
d-dimensional bounds. Locations outside bounds' can never lie inside this geometry ifextrapolation is None`. Otherwise, only the height dimension is checked. The grid dimensions of bounds must be finite but the height dimension may be infinite to count all values above/below height as inside.
max_dist
Maximum distance up to which the distance approximations should be valid. This does not affect the number of computations performed to compute the distance. Low values increase accuracy close to the surface but trade off possibly very wrong distances further away.
fill_below
Whether the inside is below or above the height values.
extrapolation
Surface height outside bounds´. Can be any validphiml.math.Extrapolation`, such as a constant. If not None, values outside bounds will be checked against the extrapolated height values. Otherwise, values outside bounds always lie on the outside.
Expand source code
class Heightmap(Geometry):

    def __init__(self,
                 height: Tensor,
                 bounds: Box,
                 max_dist: Union[float, Tensor],
                 fill_below: Union[bool, Tensor] = True,
                 extrapolation: Union[float, str, math.Extrapolation] = None,
                 faces=None):
        """

        Args:
            height: Heightmap `Tensor` of absolute (world-space) height values.
                Scalar height values on a d-1 dimensional grid.
            bounds: d-dimensional bounds.
                Locations outside `bounds' can never lie inside this geometry if `extrapolation is None`.
                Otherwise, only the height dimension is checked.
                The grid dimensions of `bounds` must be finite but the height dimension may be infinite to count all values above/below `height` as inside.
            max_dist: Maximum distance up to which the distance approximations should be valid.
                This does not affect the number of computations performed to compute the distance.
                Low values increase accuracy close to the surface but trade off possibly very wrong distances further away.
            fill_below: Whether the inside is below or above the height values.
            extrapolation: Surface height outside `bounds´. Can be any valid `phiml.math.Extrapolation`, such as a constant.
                If not `None`, values outside `bounds` will be checked against the extrapolated `height` values.
                Otherwise, values outside `bounds` always lie on the outside.
        """
        assert channel(height).is_empty, f"height must be a scalar quantity but got {height.shape}"
        assert spatial(height), f"height field must have at least one spatial dim but got {height}"
        assert bounds.vector.size == spatial(height).rank + 1, f"bounds must include the spatial grid dimensions {spatial(height)} and the height dimension but got {bounds}"
        dims = bounds.vector.item_names
        self._hdim = spatial(*dims).without(height.shape).name
        if math.all_available(height, bounds.lower, bounds.upper):
            assert bounds[self._hdim].lies_inside(height).all, f"All height values should be within the {self._hdim}-range given by bounds but got height={height}"
        self._height = height
        self._fill_below = wrap(fill_below)
        self._bounds = bounds
        self._max_dist = wrap(max_dist)
        self._extrapolation = math.as_extrapolation(extrapolation)
        if faces is None:
            proj_faces = build_faces(self)
            with numpy.errstate(divide='ignore', invalid='ignore'):
                secondary_idx = math.map(find_most_important_neighbor, proj_faces, self.dx, self.resolution, self._hdim, self._fill_below, self._max_dist, dims=instance, unwrap_scalars=False)
                secondary_faces = math.map(math.gather, proj_faces, secondary_idx, dims=instance)
            self._faces: Face = stack([proj_faces, *unstack(secondary_faces, 'side')], batch(consider='self,outside,inside'), expand_values=True)
            self._faces = cached(self._faces)  # otherwise, this may get expanded during tracing
        else:
            self._faces = faces

    @property
    def height(self):
        return self._height

    @property
    def bounds(self):
        return self._bounds

    @property
    def max_dist(self):
        return self._max_dist

    @property
    def fill_below(self):
        return self._fill_below

    @property
    def extrapolation(self):
        return self._extrapolation

    @property
    def shape(self) -> Shape:
        return (self._height.shape - 1) & channel(self._bounds)

    @property
    def resolution(self):
        return spatial(self._height) - 1

    @property
    def grid_bounds(self):
        return self._bounds[self.resolution.name_list]

    @property
    def up(self):
        dims = self._bounds.vector.item_names
        height_unit = vec(**{d: 1 if d == self._hdim else 0 for d in dims})
        return math.where(self._fill_below, height_unit, -height_unit)

    @property
    def dx(self):
        return self._bounds.size[self.resolution.name_list] / spatial(self.resolution)

    @property
    def vertices(self):
        hdim = self._hdim
        space = self.vector.item_names
        pos = self.grid_bounds.local_to_global(math.meshgrid(spatial(self._height)) / self.resolution)
        vert = stack({dim: self.height if dim == hdim else pos[dim] for dim in space}, channel('vector'))
        return vert

    def lies_inside(self, location: Tensor) -> Tensor:
        location = rename_dims(location, self.resolution.names, ['loc_' + n for n in self.resolution.names])
        projected_loc = location[self.resolution.name_list]
        @math.map_i2b
        def lies_inside_(height, grid_bounds, bounds, fill_below, extrapolation):
            float_idx = (projected_loc - grid_bounds.lower) / grid_bounds.size * self.resolution
            if extrapolation is None:
                within_bounds = bounds.lies_inside(location)
            else:
                within_bounds = bounds[self._hdim].lies_inside(location[self._hdim])
            surface_height = math.grid_sample(height, float_idx - 1, math.NAN if extrapolation is None else extrapolation)
            is_below = location[self._hdim] <= surface_height
            inside = is_below == fill_below
            result = math.where(within_bounds, inside, False)
            return rename_dims(result, ['loc_' + n for n in self.resolution.names], self.resolution.names)
        return math.any(lies_inside_(self._height, self.grid_bounds, self._bounds, self._fill_below, self._extrapolation), instance(self))

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        grid_bounds = math.i2b(self.grid_bounds)
        faces = math.i2b(self._faces)
        cell_idx = cell_index(location, grid_bounds, self.resolution, clip=True)
        # --- gather face infos at projected cell ---
        normals = faces.normal[cell_idx]
        offsets = faces.origin_distance[cell_idx]
        face_idx = faces.index[cell_idx]
        # --- test location against all considered faces and boundaries ---
        # distances = plane_sgn_dist(-offsets, normals, location)  # offset has the - convention here
        distances = normals.vector @ location.vector + offsets
        projected_onto_face = location - normals * distances
        projected_idx = cell_index(projected_onto_face, grid_bounds, self.resolution, clip=False)
        projects_onto_face = math.all(projected_idx == face_idx, channel)
        proj_delta = normals * -distances
        # --- if not projected onto face, use distance to highest point instead ---
        delta_highest = faces.extrema_points[cell_idx] - location
        flat_normal = math.vec_normalize(normals[self.resolution.name_list], epsilon=1e-5)
        delta_edge = flat_normal * (delta_highest[self.resolution].vector @ flat_normal.vector)  # project onto flat normal
        delta_edge = concat([delta_edge, delta_highest[[self._hdim]]], 'vector')
        distance_edge = math.vec_length(delta_edge, eps=1e-5)
        delta_highest, distance_edge = math.at_min((delta_highest, distance_edge), distance_edge, 'extremum')
        distance_edge = math.where(distances < 0, -distance_edge, distance_edge)  # copy sign of distances onto distance_edges to always return the signed distance
        distances = math.where(projects_onto_face, distances, distance_edge)
        # --- use closest face from considered ---
        delta = math.where(projects_onto_face, proj_delta, delta_highest)
        return math.at_min((distances, delta, normals, offsets, face_idx), key=abs(distances), dim=batch('consider') & instance(self).as_batch())

    def shallow_equals(self, other):
        return self == other

    def __repr__(self):
        return f"Heightmap {self.resolution}, bounds={self._bounds}"

    def __variable_attrs__(self):
        return '_height', '_bounds', '_max_dist', '_fill_below', '_extrapolation', '_faces'

    def __value_attrs__(self):
        return ()

    def __getitem__(self, item):
        item = slicing_dict(self, item)
        return Heightmap(self._height[item], self._bounds[item], self._max_dist[item], self._fill_below[item], self._extrapolation[item] if self._extrapolation is not None else None, math.slice(self._faces, item))

    def bounding_half_extent(self) -> Tensor:
        h_min, h_max = self._faces.extrema_points[{'consider': 0, 'vector': self._hdim}].extremum
        dh = h_max - h_min
        return stack({d: self.dx[d] if d in self.resolution else dh for d in self.vector.item_names}, channel('vector'), expand_values=True) * .5

    @property
    def center(self) -> Tensor:
        return self._faces.center.consider[0]

    @property
    def volume(self) -> Tensor:
        return math.prod(self.bounding_half_extent() * 2, channel)

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError

    @property
    def face_centers(self) -> Tensor:
        return self._faces.center

    @property
    def face_areas(self) -> Tensor:
        raise NotImplementedError

    @property
    def face_normals(self) -> Tensor:
        return self._faces.normal

    @property
    def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def face_shape(self) -> Shape:
        return non_channel(self._faces.center)

    def approximate_signed_distance(self, location: Tensor) -> Tensor:
        return self.approximate_closest_surface(location)[0]

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def bounding_radius(self) -> Tensor:
        return self._bounds.bounding_radius()

    def at(self, center: Tensor) -> 'Geometry':
        raise NotImplementedError

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[Any, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop bounds
Expand source code
@property
def bounds(self):
    return self._bounds
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._faces.center.consider[0]
prop dx
Expand source code
@property
def dx(self):
    return self._bounds.size[self.resolution.name_list] / spatial(self.resolution)
prop extrapolation
Expand source code
@property
def extrapolation(self):
    return self._extrapolation
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    raise NotImplementedError
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    return self._faces.center
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    return self._faces.normal
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return non_channel(self._faces.center)
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError
prop fill_below
Expand source code
@property
def fill_below(self):
    return self._fill_below
prop grid_bounds
Expand source code
@property
def grid_bounds(self):
    return self._bounds[self.resolution.name_list]
prop height
Expand source code
@property
def height(self):
    return self._height
prop max_dist
Expand source code
@property
def max_dist(self):
    return self._max_dist
prop resolution
Expand source code
@property
def resolution(self):
    return spatial(self._height) - 1
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return (self._height.shape - 1) & channel(self._bounds)
prop up
Expand source code
@property
def up(self):
    dims = self._bounds.vector.item_names
    height_unit = vec(**{d: 1 if d == self._hdim else 0 for d in dims})
    return math.where(self._fill_below, height_unit, -height_unit)
prop vertices
Expand source code
@property
def vertices(self):
    hdim = self._hdim
    space = self.vector.item_names
    pos = self.grid_bounds.local_to_global(math.meshgrid(spatial(self._height)) / self.resolution)
    vert = stack({dim: self.height if dim == hdim else pos[dim] for dim in space}, channel('vector'))
    return vert
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return math.prod(self.bounding_half_extent() * 2, channel)

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def shallow_equals(self, other)

Quick equality check. May return False even if other == self. However, if True is returned, the geometries are guaranteed to be equal.

The shallow_equals() check does not compare all tensor elements but merely checks whether the same tensors are referenced.

class Mesh (vertices: Union[phiml.math._tensors.Tensor, phi.geom._geom.Geometry], elements: phiml.math._tensors.Tensor, element_rank: int, boundaries: Dict[str, Dict[str, slice]], center: phiml.math._tensors.Tensor, volume: phiml.math._tensors.Tensor, normals: Optional[phiml.math._tensors.Tensor], face_centers: Optional[phiml.math._tensors.Tensor], face_normals: Optional[phiml.math._tensors.Tensor], face_areas: Optional[phiml.math._tensors.Tensor], face_vertices: Optional[phiml.math._tensors.Tensor], vertex_normals: Optional[phiml.math._tensors.Tensor], vertex_connectivity: Optional[phiml.math._tensors.Tensor], element_connectivity: Optional[phiml.math._tensors.Tensor], max_cell_walk: int = None)

Unstructured mesh. Use mesh() or mesh_from_numpy() to construct a mesh manually or load_su2() to load one from a file.

Args

vertices
Vertex positions, shape (vertices:i, vector:c)
elements
Sparse Tensor listing ordered vertex indices per cell. (cells, ~vertices). The vertex count is equal to the number of elements per row.
face_vertices
(cells, ~cells, face_vertices)
Expand source code
class Mesh(Geometry):
    """
    Unstructured mesh.
    Use `phi.geom.mesh()` or `phi.geom.mesh_from_numpy()` to construct a mesh manually or `phi.geom.load_su2()` to load one from a file.
    """

    def __init__(self,
                 vertices: Union[Geometry, Tensor],
                 elements: Tensor,
                 element_rank: int,
                 boundaries: Dict[str, Dict[str, slice]],
                 center: Tensor,
                 volume: Tensor,
                 normals: Optional[Tensor],
                 face_centers: Optional[Tensor],
                 face_normals: Optional[Tensor],
                 face_areas: Optional[Tensor],
                 face_vertices: Optional[Tensor],
                 vertex_normals: Optional[Tensor],
                 vertex_connectivity: Optional[Tensor],
                 element_connectivity: Optional[Tensor],
                 max_cell_walk: int = None):
        """
        Args:
            vertices: Vertex positions, shape (vertices:i, vector:c)
            elements: Sparse `Tensor` listing ordered vertex indices per cell. (cells, ~vertices).
                The vertex count is equal to the number of elements per row.
            face_vertices: (cells, ~cells, face_vertices)
        """
        assert elements.dtype.kind == int, f"elements must be integer lists but got dtype {elements.dtype}"
        assert isinstance(center, Tensor), f"center must be a Tensor"
        if not isinstance(vertices, Geometry):
            vertices = Point(vertices)
        self._vertices = vertices
        self._elements = elements
        self._element_rank = element_rank
        self._boundaries = boundaries
        self._center = center
        self._volume = volume
        self._face_centers = face_centers
        self._face_normals = face_normals
        self._face_areas = face_areas
        if self._face_areas is not None:
            assert set(face_areas.shape.names) == set((instance(elements) & dual).names), f"face_areas must have matching primal and dual dims matching elements {instance(elements)} but got {face_areas.shape}"
        self._face_vertices = face_vertices
        assert normals is None or (isinstance(normals, Tensor) and instance(center) in normals)
        self._normals = normals
        if vertex_connectivity is None and isinstance(vertices, Graph):
            self._vertex_connectivity = vertices.connectivity
        else:
            assert vertex_connectivity is None or (isinstance(vertex_connectivity, Tensor) and instance(self._vertices) in vertex_connectivity.shape), f"Illegal vertex connectivity: {vertex_connectivity}"
            self._vertex_connectivity = vertex_connectivity
        assert vertex_normals is None or (dual(vertex_normals).rank == 1 and instance(vertex_normals).rank == 0)
        self._vertex_normals = vertex_normals
        assert element_connectivity is None or isinstance(element_connectivity, Tensor), f"element_connectivity must be a Tensor"
        self._element_connectivity = element_connectivity
        if face_areas is not None or face_centers is not None or face_normals is not None:
            cell_deltas = pairwise_distances(self.center, format=self.cell_connectivity)
            cell_distances = math.vec_length(cell_deltas)
            neighbors_dim = dual(face_areas)
            assert (cell_distances > 0).all, f"All cells must have distance > 0 but found 0 distance at {math.nonzero(cell_distances == 0)}"
            face_distances = math.vec_length(self.face_centers[self.interior_faces] - self.center)
            self._relative_face_distance = math.concat([face_distances / cell_distances, self.boundary_connectivity], neighbors_dim)
            boundary_deltas = (self.face_centers - self.center)[self.all_boundary_faces]
            assert (math.vec_length(boundary_deltas) > 0).all, f"All boundary faces must be separated from the cell centers but 0 distance at the following {channel(math.stored_indices(boundary_deltas)).item_names[0]}:\n{math.nonzero(math.vec_length(boundary_deltas) == 0):full}"
            self._neighbor_offsets = math.concat([cell_deltas, boundary_deltas], neighbors_dim)
        else:
            self._relative_face_distance = None
            self._neighbor_offsets = None
        if max_cell_walk is None:
            max_cell_walk = 2 if instance(elements).volume > 1 else 1
        self._max_cell_walk = max_cell_walk

    def __variable_attrs__(self):
        return '_vertices', '_elements', '_center', '_volume', '_face_centers', '_face_normals', '_face_areas', '_face_vertices', '_normals', '_vertex_connectivity', '_vertex_normals', '_element_connectivity', '_relative_face_distance', '_neighbor_offsets'

    def __value_attrs__(self):
        return '_vertices',

    @property
    def shape(self) -> Shape:
        return shape(self._elements).non_dual & channel(self._vertices) & batch(self._vertices)

    @property
    def cell_count(self):
        return instance(self._elements).size

    @property
    def center(self) -> Tensor:
        return self._center

    @property
    def face_centers(self) -> Tensor:
        return self._face_centers

    @property
    def face_areas(self) -> Tensor:
        return self._face_areas

    @property
    def face_normals(self) -> Tensor:
        return self._face_normals

    @property
    def face_shape(self) -> Shape:
        return instance(self._elements) & dual

    @property
    def sets(self):
        return {'center': non_batch(self)-'vector', 'vertex': instance(self._vertices), '~vertex': dual(self._elements)}

    def get_points(self, set_key: str) -> Tensor:
        if set_key == 'vertex':
            return self.vertices.center
        elif set_key == '~vertex':
            return si2d(self.vertices.center)
        else:
            return Geometry.get_points(self, set_key)

    def get_boundary(self, set_key: str) -> Dict[str, Dict[str, slice]]:
        if set_key in ['vertex', '~vertex']:
            return {}
        return Geometry.get_boundary(self, set_key)

    @property
    def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[str, Dict[str, slice]]:
        return self._boundaries

    @property
    def _nb(self):
        return dual(self._face_areas)

    @property
    def all_boundary_faces(self) -> Dict[str, slice]:
        return {self._nb: slice(instance(self).volume, None)}
    
    @property
    def interior_faces(self) -> Dict[str, slice]:
        return {self._nb: slice(0, instance(self).volume)}

    def pad_boundary(self, value: Tensor, widths: Dict[str, Dict[str, slice]] = None, mode: Extrapolation or Tensor or Number = 0, **kwargs) -> Tensor:
        mode = as_extrapolation(mode)
        if self._nb not in value.shape:
            value = math.replace_dims(value, instance, self._nb)
        else:
            raise NotImplementedError
        if widths is None:
            widths = self.boundary_faces
        if isinstance(widths, (tuple, list)):
            if len(widths) == 0 or isinstance(widths[0], dict):  # add sliced-off slices
                pass
        dim = next(iter(next(iter(widths.values()))))
        slices = [slice(0, value.shape.get_size(dim))]
        values = [value]
        connectivity = self.connectivity
        for name, b_slice in widths.items():
            if b_slice[dim].stop - b_slice[dim].start > 0:
                slices.append(b_slice[dim])
                values.append(mode.sparse_pad_values(value, connectivity[b_slice], name, mesh=self, **kwargs))
        perm = np.argsort([s.start for s in slices])
        ordered_pieces = [values[i] for i in perm]
        return concat(ordered_pieces, dim, expand_values=True)

    @property
    def cell_connectivity(self) -> Tensor:
        """
        Returns a bool-like matrix whose non-zero entries denote connected elements.
        In meshes or grids, elements are connected if they share a face in 3D, an edge in 2D, or a vertex in 1D.

        Returns:
            `Tensor` of shape (elements, ~elements)
        """
        return self.connectivity[self.interior_faces]

    @property
    def boundary_connectivity(self) -> Tensor:
        return self.connectivity[self.all_boundary_faces]

    @property
    def connectivity(self) -> Tensor:
        if self._element_connectivity is not None:
            return self._element_connectivity
        if self._face_areas is None and self._face_normals is None and self._face_centers is None:
            return None
        if is_sparse(self._face_areas):
            return tensor_like(self._face_areas, True)
        else:
            return self._face_areas > 0

    @property
    def distance_matrix(self):
        return math.vec_length(math.pairwise_distances(self.center, edges=self.cell_connectivity, format='as edges', default=None))

    def faces_to_vertices(self, values: Tensor, reduce=sum):
        v = math.stored_values(values, invalid='keep')  # ToDo replace this once PhiML has support for dense instance dims and sparse scatter
        i = math.stored_values(self._face_vertices, invalid='keep')
        i = rename_dims(i, channel, instance)
        out_shape = non_channel(self._vertices) & shape(values).without(self.face_shape)
        return math.scatter(out_shape, i, v, mode=reduce, outside_handling='undefined')

    @property
    def relative_face_distance(self):
        """|face_center - center| / |neighbor_center - center|"""
        return self._relative_face_distance

    @property
    def neighbor_offsets(self):
        """Returns shift vector to neighbor centroids and boundary faces."""
        return self._neighbor_offsets

    @property
    def neighbor_distances(self):
        return vec_length(self._neighbor_offsets)

    @property
    def faces(self) -> 'Geometry':
        """
        Assembles information about the boundaries of the elements that make up the surface.
        For 2D elements, the faces are edges, for 3D elements, the faces are planar elements.

        Returns:
            center: Center of face connecting a pair of elements. Shape (~elements, elements, vector).
                Returns 0-vectors for unconnected elements.
            area: Area of face connecting a pair of elements. Shape (~elements, elements).
                Returns 0 for unconnected elements.
            normal: Normal vector of face connecting a pair of elements. Shape (~elements, elements, vector).
                Unconnected elements are assigned the vector 0.
                The vector points out of polygon and into ~polygon.
        """
        return Point(self.face_centers)

    @property
    def vertices(self) -> Geometry:
        return self._vertices

    @property
    def vertex_connectivity(self) -> Tensor:
        return self._vertex_connectivity

    @property
    def element_connectivity(self) -> Tensor:
        return self._element_connectivity

    @property
    def vertex_graph(self) -> Graph:
        if isinstance(self._vertices, Graph):
            return self._vertices
        assert self._vertex_connectivity is not None, f"vertex_graph not available because vertex_connectivity has not been computed"
        return graph(self._vertices, self._vertex_connectivity)

    def filter_unused_vertices(self) -> 'Mesh':
        coo = math.to_format(self._elements, 'coo').numpy()
        has_element = np.asarray(coo.sum(0) > 0)[0]
        new_index = np.cumsum(has_element) - 1
        new_index_t = wrap(new_index, dual(self._elements))
        has_element = wrap(has_element, instance(self._vertices))
        has_element_d = si2d(has_element)
        vertices = self._vertices[has_element]
        v_normals = self._vertex_normals[has_element_d]
        vertex_connectivity = None
        if self._vertex_connectivity is not None:
            vertex_connectivity = math.stored_indices(self._vertex_connectivity).index.as_batch()
            vertex_connectivity = new_index_t[{dual: vertex_connectivity}].index.as_channel()
            vertex_connectivity = math.sparse_tensor(vertex_connectivity, math.stored_values(self._vertex_connectivity), non_batch(self._vertex_connectivity).with_sizes(instance(vertices).size), False)
        if isinstance(self._elements, CompactSparseTensor):
            indices = new_index_t[{dual: self._elements._indices}]
            elements = CompactSparseTensor(indices, self._elements._values, self._elements._compressed_dims.with_size(instance(vertices).volume), self._elements._indices_constant, self._elements._matrix_rank)
        else:
            filtered_coo = coo_matrix((coo.data, (coo.row, new_index)), shape=(instance(self._elements).volume, instance(vertices).volume))  # ToDo keep sparse format
            elements = wrap(filtered_coo, self._elements.shape.without_sizes())
        return Mesh(vertices, elements, self._element_rank, self._boundaries, self._center, self._volume, self._normals, self._face_centers, self._face_normals, self._face_areas, None, v_normals, vertex_connectivity, self._element_connectivity, self._max_cell_walk)

    @property
    def elements(self):
        return self._elements

    @property
    def polygons(self):
        raise NotImplementedError  # ToDo return Tensor (elements, vertex_list:spatial)

    @property
    def volume(self) -> Tensor:
        return self._volume

    @property
    def element_rank(self):
        return self._element_rank

    @property
    def normals(self) -> Tensor:
        return self._normals

    @property
    def vertex_normals(self) -> Tensor:
        return self._vertex_normals  # dual dim

    @property
    def vertex_positions(self) -> Tensor:
        return si2d(self._vertices.center)  # dual dim

    def lies_inside(self, location: Tensor) -> Tensor:
        idx = math.find_closest(self._center, location)
        for i in range(self._max_cell_walk):
            idx, leaves_mesh, is_outside, *_ = self.cell_walk_towards(location, idx, allow_exit=i == self._max_cell_walk - 1)
        return ~(leaves_mesh & is_outside)

    def approximate_signed_distance(self, location: Union[Tensor, tuple]) -> Tensor:
        if self.element_rank == 2 and self.spatial_rank == 3:
            closest_elem = math.find_closest(self._center, location)
            center = self._center[closest_elem]
            normal = self._normals[closest_elem]
            return plane_sgn_dist(center, normal, location)
        if self._center is None:
            raise NotImplementedError("Mesh.approximate_signed_distance only available when faces are built.")
        idx = math.find_closest(self._center, location)
        for i in range(self._max_cell_walk):
            idx, leaves_mesh, is_outside, distances, nb_idx = self.cell_walk_towards(location, idx, allow_exit=False)
        return math.max(distances, dual)

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        if self.element_rank == 2 and self.spatial_rank == 3:
            closest_elem = math.find_closest(self._center, location)
            center = self._center[closest_elem]
            normal = self._normals[closest_elem]
            face_size = math.sqrt(self._volume) * 4
            size = face_size[closest_elem]
            sgn_dist = plane_sgn_dist(center, normal, location)
            delta = center - location  # this is not accurate...
            outward = math.where(abs(sgn_dist) < size, normal, math.normalize(delta))
            return sgn_dist, delta, outward, None, closest_elem
        # idx = math.find_closest(self._center, location)
        # for i in range(self._max_cell_walk):
        #     idx, leaves_mesh, is_outside, distances, nb_idx = self.cell_walk_towards(location, idx, allow_exit=False)
        # sgn_dist = math.max(distances, dual)
        # cell_normals = self.face_normals[idx]
        # normal = cell_normals[{dual: nb_idx}]
        # return sgn_dist, delta, normal, offset, face_index
        raise NotImplementedError

    def cell_walk_towards(self, location: Tensor, start_cell_idx: Tensor, allow_exit=False):
        """
        If `location` is not within the cell at index `from_cell_idx`, moves to a closer neighbor cell.

        Args:
            location: Target location as `Tensor`.
            start_cell_idx: Index of starting cell. Must be a valid cell index.
            allow_exit: If `True`, returns an invalid index for points outside the mesh, otherwise keeps the current index.

        Returns:
            index: Index of the neighbor cell or starting cell.
            leaves_mesh: Whether the walk crossed the mesh boundary. Then `index` is invalid. This is only possible if `allow_exit` is true.
            is_outside: Whether `location` was outside the cell at index `start_cell_idx`.
        """
        closest_normals = self.face_normals[start_cell_idx]
        closest_face_centers = self.face_centers[start_cell_idx]
        offsets = closest_normals.vector @ closest_face_centers.vector  # this dot product could be cashed in the mesh
        distances = closest_normals.vector @ location.vector - offsets
        is_outside = math.any(distances > 0, dual)
        nb_idx = math.argmax(distances, dual).index[0]  # cell index or boundary face index
        leaves_mesh = nb_idx >= instance(self).volume
        next_idx = math.where(is_outside & (~leaves_mesh | allow_exit), nb_idx, start_cell_idx)
        return next_idx, leaves_mesh, is_outside, distances, nb_idx

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def bounding_radius(self) -> Tensor:
        center = self._elements * self.center
        vert_pos = rename_dims(self._vertices.center, instance, dual)
        dist_to_vert = math.vec_length(vert_pos - center)
        max_dist = math.max(dist_to_vert, dual)
        return max_dist

    def bounding_half_extent(self) -> Tensor:
        center = self._elements * self.center
        vert_pos = rename_dims(self._vertices.center, instance, dual)
        max_delta = math.max(abs(vert_pos - center), dual)
        return max_delta

    def bounding_box(self) -> 'BaseBox':
        return self.vertices.bounding_box()

    @property
    def bounds(self):
        return Box(math.min(self._vertices.center, instance), math.max(self._vertices.center, instance))

    def at(self, center: Tensor) -> 'Mesh':
        if instance(self._elements) in center.shape:
            raise NotImplementedError("Setting Mesh positions only supported for vertices, not elements")
        if dual(self._elements) in center.shape:
            delta = rename_dims(center, dual, instance(self._vertices))
        if instance(self._vertices) in center.shape:
            vertices = self._vertices.at(center)
            return mesh(vertices, self._elements, self._boundaries, build_faces=self._face_areas is not None)
        else:
            shift = center - self.bounds.center
            return self.shifted(shift)

    def shifted(self, delta: Tensor) -> 'Mesh':
        if instance(self._elements) in delta.shape:
            raise NotImplementedError("Shifting Mesh positions only supported for vertices, not elements")
        if dual(self._elements) in delta.shape:
            delta = rename_dims(delta, dual, instance(self._vertices))
        if instance(self._vertices) in delta.shape:
            vertices = self._vertices.shifted(delta)
            return mesh(vertices, self._elements, self._boundaries, build_faces=self._face_areas is not None)
        else:  # shift everything
            vertices = self._vertices.shifted(delta)
            center = self._center + delta
            return Mesh(vertices, self._elements, self._element_rank, self._boundaries, center, self._volume, self._normals, self._face_centers, self._face_normals, self._face_areas, self._face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk)

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError

    def scaled(self, factor: float | Tensor) -> 'Geometry':
        pivot = self.bounds.center
        vertices = scale(self._vertices, factor, pivot)
        center = scale(Point(self._center), factor, pivot).center
        volume = self._volume * factor**self._element_rank if self._volume is not None else None
        face_areas = None
        return Mesh(vertices, self._elements, self._element_rank, self._boundaries, center, volume, self._normals, self._face_centers, self._face_normals, face_areas, self._face_vertices, self._vertex_normals, self._vertex_connectivity, self._element_connectivity, self._max_cell_walk)

    def __getitem__(self, item):
        item: dict = slicing_dict(self, item)
        assert not spatial(self._elements).only(tuple(item)), f"Cannot slice vertex lists ('{spatial(self._elements)}') but got slicing dict {item}"
        assert not instance(self._vertices).only(tuple(item)), f"Slicing by vertex indices ('{instance(self._vertices)}') not supported but got slicing dict {item}"
        cells = instance(self.shape).name
        if cells in item and isinstance(item[cells], int):
            item[cells] = slice(item[cells], item[cells] + 1)
        vertices = self._vertices[item]
        polygons = self._elements[item]
        s = math.slice
        return Mesh(vertices, polygons, self._element_rank, self._boundaries, self._center[item], self._volume[item], s(self._normals, item),
                    s(self._face_centers, item), s(self._face_normals, item), s(self._face_areas, item), s(self._face_vertices, item),
                    s(self._vertex_normals, item), s(self._vertex_connectivity, item), None, self._max_cell_walk)

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop all_boundary_faces : Dict[str, slice]
Expand source code
@property
def all_boundary_faces(self) -> Dict[str, slice]:
    return {self._nb: slice(instance(self).volume, None)}
prop boundary_connectivity : phiml.math._tensors.Tensor
Expand source code
@property
def boundary_connectivity(self) -> Tensor:
    return self.connectivity[self.all_boundary_faces]
prop boundary_elements : Dict[str, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[str, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[str, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[str, Dict[str, slice]]:
    return self._boundaries
prop bounds
Expand source code
@property
def bounds(self):
    return Box(math.min(self._vertices.center, instance), math.max(self._vertices.center, instance))
prop cell_connectivity : phiml.math._tensors.Tensor

Returns a bool-like matrix whose non-zero entries denote connected elements. In meshes or grids, elements are connected if they share a face in 3D, an edge in 2D, or a vertex in 1D.

Returns

Tensor of shape (elements, ~elements)

Expand source code
@property
def cell_connectivity(self) -> Tensor:
    """
    Returns a bool-like matrix whose non-zero entries denote connected elements.
    In meshes or grids, elements are connected if they share a face in 3D, an edge in 2D, or a vertex in 1D.

    Returns:
        `Tensor` of shape (elements, ~elements)
    """
    return self.connectivity[self.interior_faces]
prop cell_count
Expand source code
@property
def cell_count(self):
    return instance(self._elements).size
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._center
prop connectivity : phiml.math._tensors.Tensor
Expand source code
@property
def connectivity(self) -> Tensor:
    if self._element_connectivity is not None:
        return self._element_connectivity
    if self._face_areas is None and self._face_normals is None and self._face_centers is None:
        return None
    if is_sparse(self._face_areas):
        return tensor_like(self._face_areas, True)
    else:
        return self._face_areas > 0
prop distance_matrix
Expand source code
@property
def distance_matrix(self):
    return math.vec_length(math.pairwise_distances(self.center, edges=self.cell_connectivity, format='as edges', default=None))
prop element_connectivity : phiml.math._tensors.Tensor
Expand source code
@property
def element_connectivity(self) -> Tensor:
    return self._element_connectivity
prop element_rank
Expand source code
@property
def element_rank(self):
    return self._element_rank
prop elements
Expand source code
@property
def elements(self):
    return self._elements
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    return self._face_areas
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    return self._face_centers
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    return self._face_normals
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return instance(self._elements) & dual
prop facesGeometry

Assembles information about the boundaries of the elements that make up the surface. For 2D elements, the faces are edges, for 3D elements, the faces are planar elements.

Returns

center
Center of face connecting a pair of elements. Shape (~elements, elements, vector). Returns 0-vectors for unconnected elements.
area
Area of face connecting a pair of elements. Shape (~elements, elements). Returns 0 for unconnected elements.
normal
Normal vector of face connecting a pair of elements. Shape (~elements, elements, vector). Unconnected elements are assigned the vector 0. The vector points out of polygon and into ~polygon.
Expand source code
@property
def faces(self) -> 'Geometry':
    """
    Assembles information about the boundaries of the elements that make up the surface.
    For 2D elements, the faces are edges, for 3D elements, the faces are planar elements.

    Returns:
        center: Center of face connecting a pair of elements. Shape (~elements, elements, vector).
            Returns 0-vectors for unconnected elements.
        area: Area of face connecting a pair of elements. Shape (~elements, elements).
            Returns 0 for unconnected elements.
        normal: Normal vector of face connecting a pair of elements. Shape (~elements, elements, vector).
            Unconnected elements are assigned the vector 0.
            The vector points out of polygon and into ~polygon.
    """
    return Point(self.face_centers)
prop interior_faces : Dict[str, slice]
Expand source code
@property
def interior_faces(self) -> Dict[str, slice]:
    return {self._nb: slice(0, instance(self).volume)}
prop neighbor_distances
Expand source code
@property
def neighbor_distances(self):
    return vec_length(self._neighbor_offsets)
prop neighbor_offsets

Returns shift vector to neighbor centroids and boundary faces.

Expand source code
@property
def neighbor_offsets(self):
    """Returns shift vector to neighbor centroids and boundary faces."""
    return self._neighbor_offsets
prop normals : phiml.math._tensors.Tensor
Expand source code
@property
def normals(self) -> Tensor:
    return self._normals
prop polygons
Expand source code
@property
def polygons(self):
    raise NotImplementedError  # ToDo return Tensor (elements, vertex_list:spatial)
prop relative_face_distance

|face_center - center| / |neighbor_center - center|

Expand source code
@property
def relative_face_distance(self):
    """|face_center - center| / |neighbor_center - center|"""
    return self._relative_face_distance
prop sets
Expand source code
@property
def sets(self):
    return {'center': non_batch(self)-'vector', 'vertex': instance(self._vertices), '~vertex': dual(self._elements)}
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return shape(self._elements).non_dual & channel(self._vertices) & batch(self._vertices)
prop vertex_connectivity : phiml.math._tensors.Tensor
Expand source code
@property
def vertex_connectivity(self) -> Tensor:
    return self._vertex_connectivity
prop vertex_graph : phi.geom._graph.Graph
Expand source code
@property
def vertex_graph(self) -> Graph:
    if isinstance(self._vertices, Graph):
        return self._vertices
    assert self._vertex_connectivity is not None, f"vertex_graph not available because vertex_connectivity has not been computed"
    return graph(self._vertices, self._vertex_connectivity)
prop vertex_normals : phiml.math._tensors.Tensor
Expand source code
@property
def vertex_normals(self) -> Tensor:
    return self._vertex_normals  # dual dim
prop vertex_positions : phiml.math._tensors.Tensor
Expand source code
@property
def vertex_positions(self) -> Tensor:
    return si2d(self._vertices.center)  # dual dim
prop vertices : phi.geom._geom.Geometry
Expand source code
@property
def vertices(self) -> Geometry:
    return self._vertices
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return self._volume

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: Union[phiml.math._tensors.Tensor, tuple]) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._mesh.Mesh

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_box(self) ‑> phi.geom._box.BaseBox

Returns the approximately smallest axis-aligned box that contains this Geometry. The center of the box may not be equal to self.center.

Returns

Box or Cuboid that fully contains this Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def cell_walk_towards(self, location: phiml.math._tensors.Tensor, start_cell_idx: phiml.math._tensors.Tensor, allow_exit=False)

If location is not within the cell at index from_cell_idx, moves to a closer neighbor cell.

Args

location
Target location as Tensor.
start_cell_idx
Index of starting cell. Must be a valid cell index.
allow_exit
If True, returns an invalid index for points outside the mesh, otherwise keeps the current index.

Returns

index
Index of the neighbor cell or starting cell.
leaves_mesh
Whether the walk crossed the mesh boundary. Then index is invalid. This is only possible if allow_exit is true.
is_outside
Whether location was outside the cell at index start_cell_idx.
def faces_to_vertices(self, values: phiml.math._tensors.Tensor, reduce=<built-in function sum>)
def filter_unused_vertices(self) ‑> phi.geom._mesh.Mesh
def get_boundary(self, set_key: str) ‑> Dict[str, Dict[str, slice]]
def get_points(self, set_key: str) ‑> phiml.math._tensors.Tensor
def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def pad_boundary(self, value: phiml.math._tensors.Tensor, widths: Dict[str, Dict[str, slice]] = None, mode: phiml.math.extrapolation.Extrapolation = 0, **kwargs) ‑> phiml.math._tensors.Tensor
def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def shifted(self, delta: phiml.math._tensors.Tensor) ‑> phi.geom._mesh.Mesh

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
class Point (location: phiml.math._tensors.Tensor)

Points have zero volume and are determined by a single location. An instance of Point represents a single n-dimensional point or a batch of points.

Expand source code
class Point(Geometry):
    """
    Points have zero volume and are determined by a single location.
    An instance of `Point` represents a single n-dimensional point or a batch of points.
    """

    def __init__(self, location: math.Tensor):
        assert 'vector' in location.shape, "location must have a vector dimension"
        assert location.shape.get_item_names('vector') is not None, "Vector dimension needs to list spatial dimension as item names."
        self._location = location
        self._shape = self._location.shape

    def __variable_attrs__(self):
        return '_location',

    def __value_attrs__(self):
        return '_location',

    def __with_attrs__(self, **updates):
        if '_location' in updates:
            result = Point.__new__(Point)
            result._location = updates['_location']
            result._shape = result._location.shape if result._location is not None else self._shape
            return result
        else:
            return self

    @property
    def center(self) -> Tensor:
        return self._location

    @property
    def shape(self) -> Shape:
        return self._shape

    @property
    def faces(self) -> 'Geometry':
        return self

    def unstack(self, dimension: str) -> tuple:
        return tuple(Point(loc) for loc in math.unstack(self._location, dimension))

    def lies_inside(self, location: Tensor) -> Tensor:
        return expand(math.wrap(False), shape(location).without('vector'))

    def approximate_signed_distance(self, location: Union[Tensor, tuple]) -> Tensor:
        return math.vec_abs(location - self._location)

    def bounding_radius(self) -> Tensor:
        return math.zeros()

    def bounding_half_extent(self) -> Tensor:
        return expand(0, self._shape)

    def at(self, center: Tensor) -> 'Geometry':
        return Point(center)

    def rotated(self, angle) -> 'Geometry':
        return self

    @property
    def volume(self) -> Tensor:
        return math.wrap(0)

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        return self

    @property
    def face_centers(self) -> Tensor:
        return self._location

    @property
    def face_areas(self) -> Tensor:
        return expand(0, self.face_shape)

    @property
    def face_normals(self) -> Tensor:
        raise AssertionError(f"Points have no normals")

    @property
    def boundary_elements(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
        return {}

    @property
    def face_shape(self) -> Shape:
        return self.shape

    @property
    def corners(self):
        return self._location

    def __getitem__(self, item):
        return Point(self._location[_keep_vector(slicing_dict(self, item))])

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
    return {}
prop boundary_faces : Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
    return {}
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._location
prop corners

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self):
    return self._location
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    return expand(0, self.face_shape)
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    return self._location
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    raise AssertionError(f"Points have no normals")
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return self.shape
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    return self
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return self._shape
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return math.wrap(0)

Methods

def approximate_signed_distance(self, location: Union[phiml.math._tensors.Tensor, tuple]) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def unstack(self, dimension: str) ‑> tuple

Unstacks this Geometry along the given dimension. The shapes of the returned geometries are reduced by dimension.

Args

dimension
dimension along which to unstack

Returns

geometries
tuple of length equal to geometry.shape.get_size(dimension)
class SDF (sdf: Callable, out_shape=None, bounds: phi.geom._box.BaseBox = None, center: phiml.math._tensors.Tensor = None, volume: phiml.math._tensors.Tensor = None, bounding_radius: phiml.math._tensors.Tensor = None, sdf_and_grad: Callable = None)

Function-based signed distance field. Negative values lie inside the geometry, the 0-level represents the surface.

Args

sdf
SDF function. First argument is a phiml.math.Tensor with a vector channel dim.
bounds
Grid limits. The bounds fully enclose all virtual cells.
center
(Optional) Geometry center point. Will be computed otherwise.
volume
(Optional) Geometry volume. Will be computed otherwise.
bounding_radius
(Optional) Geometry bounding radius around center. Will be computed otherwise.
Expand source code
class SDF(Geometry):
    """
    Function-based signed distance field.
    Negative values lie inside the geometry, the 0-level represents the surface.
    """
    def __init__(self, sdf: Callable, out_shape=None, bounds: BaseBox = None, center: Tensor = None, volume: Tensor = None, bounding_radius: Tensor = None, sdf_and_grad: Callable = None):
        """
        Args:
            sdf: SDF function. First argument is a `phiml.math.Tensor` with a `vector` channel dim.
            bounds: Grid limits. The bounds fully enclose all virtual cells.
            center: (Optional) Geometry center point. Will be computed otherwise.
            volume: (Optional) Geometry volume. Will be computed otherwise.
            bounding_radius: (Optional) Geometry bounding radius around center. Will be computed otherwise.
        """
        self._sdf = sdf
        if out_shape is not None:
            self._out_shape = out_shape or math.EMPTY_SHAPE
        else:
            dims = channel([bounds, center, bounding_radius])
            assert 'vector' in dims, f"If out_shape is not specified, either bounds, center or bounding_radius must be given."
            self._out_shape = sdf(math.zeros(dims['vector'])).shape
        self._bounds = bounds
        if sdf_and_grad is not None:
            self._grad = sdf_and_grad
        else:
            self._grad = math.gradient(sdf, wrt=0, get_output=True)
        if center is not None:
            self._center = center
        else:
            self._center = bounds.center
        if volume is not None:
            self._volume = volume
        else:
            self._volume = None
        if bounding_radius is not None:
            self._bounding_radius = bounding_radius
        else:
            self._bounding_radius = self._bounds.bounding_radius()

    def __call__(self, location, *aux_args, **aux_kwargs):
        native_loc = not isinstance(location, Tensor)
        if native_loc:
            location = math.wrap(location, instance('points'), self.shape['vector'])
        sdf_val: Tensor = self._sdf(location, *aux_args, **aux_kwargs)
        return sdf_val.native() if native_loc else sdf_val

    def __variable_attrs__(self):
        return '_bounds', '_center', '_volume', '_bounding_radius'

    def __value_attrs__(self):
        return ()

    @property
    def bounds(self) -> BaseBox:
        return self._bounds

    @property
    def size(self):
        return self._bounds.size

    @property
    def resolution(self):
        return spatial(self._sdf)

    @property
    def points(self):
        return UniformGrid(spatial(self._sdf), self._bounds).center

    @property
    def grid(self):
        return UniformGrid(spatial(self._sdf), self._bounds)

    @property
    def center(self) -> Tensor:
        return self._center

    @property
    def shape(self) -> Shape:
        return self._out_shape & self._bounds.shape

    @property
    def volume(self) -> Tensor:
        return self._volume

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_centers(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_areas(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_normals(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def face_shape(self) -> Shape:
        return math.EMPTY_SHAPE

    @property
    def corners(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support corners")

    def lies_inside(self, location: Tensor) -> Tensor:
        sdf = self._sdf(location)
        return sdf <= 0

    def approximate_closest_surface(self, location: Tensor, refine_iter=0) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        sgn_dist, outward = self._grad(location)
        closest = location - sgn_dist * outward
        if not refine_iter:
            _, normal = self._grad(closest)
        else:
            for i in range(refine_iter):
                sgn_dist, outward = self._grad(closest)
                closest -= sgn_dist * outward
            normal = outward
        offset = None
        face_index = None
        return sgn_dist, closest - location, normal, offset, face_index

    def sdf_and_gradient(self, location: Tensor, refine_iter=0) -> Tuple[Tensor, Tensor]:
        if not refine_iter:
            sgn_dist, outward = self._grad(location)
        else:
            sgn_dist, delta, *_ = self.approximate_closest_surface(location)
            outward = math.vec_normalize(math.sign(-sgn_dist) * delta)
        return sgn_dist, outward

    def approximate_signed_distance(self, location: Tensor) -> Tensor:
        return self._sdf(location)

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def bounding_radius(self) -> Tensor:
        return self._bounding_radius

    def bounding_half_extent(self) -> Tensor:
        return self._bounds.half_size  # this could be too small if the center is not in the middle of the bounds

    def bounding_box(self) -> 'BaseBox':
        return self._bounds

    def shifted(self, delta: Tensor) -> 'Geometry':
        raise NotImplementedError("SDF does not yet support shifting")

    def at(self, center: Tensor) -> 'Geometry':
        raise NotImplementedError("SDF does not yet support shifting")

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError("SDF does not yet support rotation")

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        off_center = self._center - self._bounds.center
        volume = self._volume * factor ** self.spatial_rank
        bounds = self._bounds.scaled(factor).shifted(off_center * (factor - 1)).corner_representation()
        return SDF(self._sdf, bounds, self._center, volume, self._bounding_radius * factor)

    def __getitem__(self, item):
        item = slicing_dict(self, item)
        if not item:
            return self
        raise NotImplementedError

    @staticmethod
    def __stack__(values: tuple, dim: Shape, **kwargs) -> 'Geometry':
        from ._geom_ops import GeometryStack
        return GeometryStack(math.layout(values, dim))

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[Any, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop bounds : phi.geom._box.BaseBox
Expand source code
@property
def bounds(self) -> BaseBox:
    return self._bounds
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._center
prop corners : phiml.math._tensors.Tensor

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support corners")
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return math.EMPTY_SHAPE
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError(f"SDF does not support faces")
prop grid
Expand source code
@property
def grid(self):
    return UniformGrid(spatial(self._sdf), self._bounds)
prop points
Expand source code
@property
def points(self):
    return UniformGrid(spatial(self._sdf), self._bounds).center
prop resolution
Expand source code
@property
def resolution(self):
    return spatial(self._sdf)
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return self._out_shape & self._bounds.shape
prop size
Expand source code
@property
def size(self):
    return self._bounds.size
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return self._volume

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor, refine_iter=0) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_box(self) ‑> phi.geom._box.BaseBox

Returns the approximately smallest axis-aligned box that contains this Geometry. The center of the box may not be equal to self.center.

Returns

Box or Cuboid that fully contains this Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def sdf_and_gradient(self, location: phiml.math._tensors.Tensor, refine_iter=0) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]
def shifted(self, delta: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
class SDFGrid (sdf: phiml.math._tensors.Tensor, bounds: phi.geom._box.BaseBox, approximate_outside=True, gradient: phiml.math._tensors.Tensor = None, center: phiml.math._tensors.Tensor = None, volume: phiml.math._tensors.Tensor = None, bounding_radius: phiml.math._tensors.Tensor = None)

Grid-based signed distance field.

Args

sdf
Signed distance values. Tensor with spatial dimensions corresponding to the physical space. Each value samples the SDF value at the center of a virtual cell.
bounds
Grid limits. The bounds fully enclose all virtual cells.
approximate_outside
Whether queries outside the SDF grid should return approximate values. This requires additional computations.
gradient
(Optional) Pre-computed gradient grid. Will be computed otherwise.
center
(Optional) Geometry center point. Will be computed otherwise.
volume
(Optional) Geometry volume. Will be computed otherwise.
bounding_radius
(Optional) Geometry bounding radius around center. Will be computed otherwise.
Expand source code
class SDFGrid(Geometry):
    """
    Grid-based signed distance field.
    """
    def __init__(self, sdf: Tensor, bounds: BaseBox, approximate_outside=True, gradient: Tensor = None, center: Tensor = None, volume: Tensor = None, bounding_radius: Tensor = None):
        """
        Args:
            sdf: Signed distance values. `Tensor` with spatial dimensions corresponding to the physical space.
                Each value samples the SDF value at the center of a virtual cell.
            bounds: Grid limits. The bounds fully enclose all virtual cells.
            approximate_outside: Whether queries outside the SDF grid should return approximate values. This requires additional computations.
            gradient: (Optional) Pre-computed gradient grid. Will be computed otherwise.
            center: (Optional) Geometry center point. Will be computed otherwise.
            volume: (Optional) Geometry volume. Will be computed otherwise.
            bounding_radius: (Optional) Geometry bounding radius around center. Will be computed otherwise.
        """
        super().__init__()
        self._sdf = sdf
        self._bounds = bounds
        self._approximate_outside = approximate_outside
        dx = bounds.size / spatial(sdf)
        if gradient is not None:
            self._grad = gradient
        else:
            grad = math.spatial_gradient(sdf, dx=dx, difference='forward', padding=math.extrapolation.ZERO_GRADIENT, stack_dim=channel('vector'))
            self._grad = grad[{dim: slice(0, -1) for dim in spatial(sdf).names}]
        if center is not None:
            self._center = center
        else:
            min_index = math.argmin(self._sdf, spatial, index_dim=channel('vector'))
            self._center = bounds.local_to_global(min_index / spatial(sdf))
        if volume is not None:
            self._volume = volume
        else:
            filled = math.sum(sdf < 0)
            self._volume = filled * math.prod(dx)
        if bounding_radius is not None:
            self._bounding_radius = bounding_radius
        else:
            points = UniformGrid(spatial(sdf), self._bounds).center
            dist = math.vec_length(points - self._center)
            dist = math.where(self._sdf <= 0, dist, 0)
            self._bounding_radius = math.max(dist)

    @property
    def values(self):
        """Signed distance grid."""
        return self._sdf

    def with_values(self, values: Tensor):
        values = expand(values, spatial(self._sdf) - spatial(values))
        return SDFGrid(values, self._bounds, self._approximate_outside, self._grad, self._center, self._volume, self._bounding_radius)

    @property
    def bounds(self):
        return self._bounds

    @property
    def size(self):
        return self._bounds.size

    @property
    def resolution(self):
        return spatial(self._sdf)

    @property
    def dx(self):
        return self._bounds.size / spatial(self._sdf)

    @property
    def points(self):
        return UniformGrid(spatial(self._sdf), self._bounds).center

    @property
    def center(self) -> Tensor:
        return self._center

    @property
    def shape(self) -> Shape:
        return non_spatial(self._sdf) & channel(vector=spatial(self._sdf))

    @property
    def volume(self) -> Tensor:
        return self._volume

    def __variable_attrs__(self):
        return '_sdf', '_bounds', '_grad', '_center', '_volume', '_bounding_radius'

    def __value_attrs__(self):
        return '_sdf',

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_centers(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_areas(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def face_normals(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support faces")

    @property
    def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def face_shape(self) -> Shape:
        return math.EMPTY_SHAPE

    @property
    def corners(self) -> Tensor:
        raise NotImplementedError(f"SDF does not support corners")

    def lies_inside(self, location: Tensor) -> Tensor:
        float_idx = (location - self._bounds.lower) / self.size * self.resolution
        sdf_val = math.grid_sample(self._sdf, float_idx - .5, math.extrapolation.ZERO_GRADIENT)
        if self._approximate_outside:
            within_bounds = self._bounds.lies_inside(location)
            return within_bounds & (sdf_val <= 0)
        else:
            return sdf_val <= 0

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        float_idx = (location - self._bounds.lower) / self.size * self.resolution
        sdf_val = math.grid_sample(self._sdf, float_idx - .5, math.extrapolation.ZERO_GRADIENT)
        sdf_grad = math.grid_sample(self._grad, float_idx - 1, math.extrapolation.ZERO_GRADIENT)
        sdf_grad = math.vec_normalize(sdf_grad)  # theoretically not necessary
        sgn_dist = sdf_val
        if self._approximate_outside:
            within_bounds = self._bounds.lies_inside(location)
            from_center = location - self._center
            dist_from_center = math.vec_length(from_center) - self._bounding_radius
            sgn_dist = math.where(within_bounds, sdf_val, dist_from_center)
            sdf_grad = math.where(within_bounds, sdf_grad, math.vec_normalize(from_center))
        delta = sgn_dist * -sdf_grad
        surface_pos = location + delta
        surf_float_idx = (surface_pos - self._bounds.lower) / self.size * self.resolution
        normal = math.grid_sample(self._grad, surf_float_idx - 1, math.extrapolation.ZERO_GRADIENT)
        normal = math.where(self._bounds.lies_inside(surface_pos), normal, sdf_grad)  # use current normal if surface point is outside SDF grid
        normal = math.vec_normalize(normal)
        face_index = expand(0, non_channel(location))
        offset = normal.vector @ surface_pos.vector
        return sgn_dist, delta, normal, offset, face_index

    def approximate_signed_distance(self, location: Tensor) -> Tensor:
        float_idx = (location - self._bounds.lower) / self.size * self.resolution
        sdf_val = math.grid_sample(self._sdf, float_idx - .5, math.extrapolation.ZERO_GRADIENT)
        if self._approximate_outside:
            within_bounds = self._bounds.lies_inside(location)
            dist_from_center = math.vec_length(location - self._center) - self._bounding_radius
            return math.where(within_bounds, sdf_val, dist_from_center)
        else:
            return sdf_val

    def sample_uniform(self, *shape: math.Shape) -> Tensor:
        raise NotImplementedError

    def bounding_radius(self) -> Tensor:
        return self._bounding_radius

    def bounding_half_extent(self) -> Tensor:
        return self._bounds.half_size  # this could be too small if the center is not in the middle of the bounds

    def shifted(self, delta: Tensor) -> 'Geometry':
        return SDFGrid(self._sdf, self._bounds.shifted(delta), self._approximate_outside, self._grad, self._center + delta, self._volume, self._bounding_radius)

    def at(self, center: Tensor) -> 'Geometry':
        return self.shifted(center - self._center)

    def rotated(self, angle: Union[float, Tensor]) -> 'Geometry':
        raise NotImplementedError("SDF does not yet support rotation")

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        off_center = self._center - self._bounds.center
        volume = self._volume * factor ** self.spatial_rank
        bounds = self._bounds.scaled(factor).shifted(off_center * (factor - 1)).corner_representation()
        return SDFGrid(self._sdf, bounds, self._approximate_outside, self._grad, self._center, volume, self._bounding_radius * factor)

    def __getitem__(self, item):
        if 'vector' in item:
            raise NotImplementedError("SDF projection not yet supported")
        return SDFGrid(self._sdf[item], self._bounds[item], self._approximate_outside, self._grad[item], self._center[item], self._volume[item], self._bounding_radius[item])

Ancestors

  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[Any, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop bounds
Expand source code
@property
def bounds(self):
    return self._bounds
prop center : phiml.math._tensors.Tensor

Center location in single channel dimension.

Expand source code
@property
def center(self) -> Tensor:
    return self._center
prop corners : phiml.math._tensors.Tensor

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support corners")
prop dx
Expand source code
@property
def dx(self):
    return self._bounds.size / spatial(self._sdf)
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    raise NotImplementedError(f"SDF does not support faces")
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return math.EMPTY_SHAPE
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError(f"SDF does not support faces")
prop points
Expand source code
@property
def points(self):
    return UniformGrid(spatial(self._sdf), self._bounds).center
prop resolution
Expand source code
@property
def resolution(self):
    return spatial(self._sdf)
prop shape : phiml.math._shape.Shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self) -> Shape:
    return non_spatial(self._sdf) & channel(vector=spatial(self._sdf))
prop size
Expand source code
@property
def size(self):
    return self._bounds.size
prop values

Signed distance grid.

Expand source code
@property
def values(self):
    """Signed distance grid."""
    return self._sdf
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> Tensor:
    return self._volume

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Computes the approximate distance from location to the surface of the geometry. Locations outside return positive values, inside negative values and zero exactly at the boundary.

The exact distance metric used depends on the geometry. The approximation holds close to the surface and the distance grows to infinity as the location is moved infinitely far from the geometry. The distance metric is differentiable and its gradients are bounded at every point in space.

When dealing with unions or collections of geometries (instance dimensions), the shortest distance to any instance is returned. This also holds for negative distances.

Args

location
Tensor with one channel dim vector matching the geometry's vector dim.

Returns

Float Tensor

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self) ‑> phiml.math._tensors.Tensor

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location: phiml.math._tensors.Tensor) ‑> phiml.math._tensors.Tensor

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape) ‑> phiml.math._tensors.Tensor

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

def shifted(self, delta: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
def with_values(self, values: phiml.math._tensors.Tensor)
class Sphere (center: phiml.math._tensors.Tensor = None, radius: Union[phiml.math._tensors.Tensor, float] = None, volume: Union[phiml.math._tensors.Tensor, float] = None, radius_variable=True, **center_: Union[phiml.math._tensors.Tensor, float])

N-dimensional sphere. Defined through center position and radius.

Args

center
Sphere center as Tensor with vector dimension. The spatial dimension order should be specified in the vector dimension via item names.
radius
Sphere radius as float or Tensor
**center_
Specifies center when the center argument is not given. Center position by dimension, e.g. x=0.5, y=0.2.
Expand source code
class Sphere(Geometry):
    """
    N-dimensional sphere.
    Defined through center position and radius.
    """

    def __init__(self,
                 center: Tensor = None,
                 radius: Union[float, Tensor] = None,
                 volume: Union[float, Tensor] = None,
                 radius_variable=True,
                 **center_: Union[float, Tensor]):
        """
        Args:
            center: Sphere center as `Tensor` with `vector` dimension.
                The spatial dimension order should be specified in the `vector` dimension via item names.
            radius: Sphere radius as `float` or `Tensor`
            **center_: Specifies center when the `center` argument is not given. Center position by dimension, e.g. `x=0.5, y=0.2`.
        """
        if center is not None:
            assert isinstance(center, Tensor), f"center must be a Tensor but got {type(center).__name__}"
            assert 'vector' in center.shape, f"Sphere center must have a 'vector' dimension."
            assert center.shape.get_item_names('vector') is not None, f"Vector dimension must list spatial dimensions as item names. Use the syntax Sphere(x=x, y=y) to assign names."
            self._center = center
        else:
            self._center = wrap(tuple(center_.values()), math.channel(vector=tuple(center_.keys())))
        if radius is None:
            assert volume is not None, f"Either radius or volume must be specified but got neither."
            self._radius = Sphere.radius_from_volume(wrap(volume), self._center.vector.size)
        else:
            self._radius = wrap(radius)
        self._radius_variable = radius_variable
        assert 'vector' not in self._radius.shape, f"Sphere radius must not vary along vector but got {radius}"

    @property
    def shape(self):
        if self._center is None or self._radius is None:
            return None
        return self._center.shape & self._radius.shape

    @property
    def radius(self):
        return self._radius

    @property
    def center(self):
        return self._center

    @property
    def volume(self) -> math.Tensor:
        return Sphere.volume_from_radius(self._radius, self.spatial_rank)

    @staticmethod
    def volume_from_radius(radius: Union[float, Tensor], spatial_rank: int):
        if spatial_rank == 1:
            return 2 * radius
        elif spatial_rank == 2:
            return PI * radius ** 2
        elif spatial_rank == 3:
            return 4/3 * PI * radius ** 3
        else:
            raise NotImplementedError(f"spatial_rank>3 not supported, got {spatial_rank}")
            # n = self.spatial_rank
            # return math.pi ** (n // 2) / math.faculty(math.ceil(n / 2)) * self._radius ** n

    @staticmethod
    def radius_from_volume(volume: Union[float, Tensor], spatial_rank: int):
        if spatial_rank == 1:
            return volume / 2
        elif spatial_rank == 2:
            return math.sqrt(volume / PI)
        elif spatial_rank == 3:
            return (.75 / PI * volume) ** (1/3)
        else:
            raise NotImplementedError(f"spatial_rank>3 not supported, got {spatial_rank}")

    def lies_inside(self, location):
        distance_squared = math.sum((location - self.center) ** 2, dim='vector')
        return math.any(distance_squared <= self.radius ** 2, self.shape.instance)  # union for instance dimensions

    def approximate_signed_distance(self, location: Union[Tensor, tuple]):
        """
        Computes the exact distance from location to the closest point on the sphere.
        Very close to the sphere center, the distance takes a constant value.

        Args:
          location: float tensor of shape (batch_size, ..., rank)

        Returns:
          float tensor of shape (*location.shape[:-1], 1).

        """
        distance = math.vec_length(location - self._center, eps=1e-3)
        return math.min(distance - self.radius, self.shape.instance)  # union for instance dimensions

    def approximate_closest_surface(self, location: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
        self_center = self.center
        self_radius = self.radius
        center_delta = location - self_center
        center_dist = math.vec_length(center_delta)
        sgn_dist = center_dist - self_radius
        if instance(self):
            self_center, self_radius, sgn_dist, center_delta, center_dist = math.at_min((self.center, self.radius, sgn_dist, center_delta, center_dist), key=abs(sgn_dist), dim=instance)
        normal = math.safe_div(center_delta, center_dist)
        default_normal = wrap([1] + [0] * (self.spatial_rank-1), self.shape['vector'])
        normal = math.where(center_dist == 0, default_normal, normal)
        surface_pos = self_center + self_radius * normal
        delta = surface_pos - location
        face_index = expand(0, non_channel(location))
        offset = normal.vector @ surface_pos.vector
        return sgn_dist, delta, normal, offset, face_index

    def sample_uniform(self, *shape: math.Shape):
        # --- Choose a distance from the center of the sphere, equally weighted by mass ---
        uniform = math.random_uniform(self.shape.non_singleton.without('vector'), *shape)
        if self.spatial_rank == 1:
            r = self.radius * uniform
        else:
            r = self.radius * (uniform ** (1 / self.spatial_rank))
        # --- Uniformly sample a unit vector for direction over the surface of the sphere (Muller 1959, Marsaglia 1972) ---
        unit_vector = math.random_normal(self.shape.non_singleton.without('vector'), *shape, self.shape['vector'])
        unit_vector /= math.vec_length(unit_vector, vec_dim='vector')
        return self.center + r * unit_vector

    def bounding_radius(self):
        return self.radius

    def bounding_half_extent(self):
        return expand(self.radius, self._center.shape.only('vector'))

    def at(self, center: Tensor) -> 'Geometry':
        return Sphere(center, self._radius, radius_variable=self._radius_variable)

    def rotated(self, angle):
        return self

    def scaled(self, factor: Union[float, Tensor]) -> 'Geometry':
        return Sphere(self.center, self.radius * factor, radius_variable=self._radius_variable)

    def __variable_attrs__(self):
        return ('_center', '_radius') if self._radius_variable else ('_center',)

    def __value_attrs__(self):
        return '_center',

    def __value_attrs__(self):
        return '_center', '_radius'

    def __value_attrs__(self):
        return '_center', '_radius'

    def __getitem__(self, item):
        item = slicing_dict(self, item)
        return Sphere(self._center[_keep_vector(item)], self._radius[item], radius_variable=self._radius_variable)

    @property
    def faces(self) -> 'Geometry':
        raise NotImplementedError(f"Sphere.faces not implemented.")

    @property
    def face_centers(self) -> Tensor:
        return math.zeros(self.shape & dual(shell=0))

    @property
    def face_areas(self) -> Tensor:
        return math.zeros(self.face_shape)

    @property
    def face_normals(self) -> Tensor:
        return math.zeros(self.shape & dual(shell=0))

    @property
    def boundary_elements(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
        return {}

    @property
    def face_shape(self) -> Shape:
        return self.shape.without('vector') & dual(shell=0)

    @property
    def corners(self) -> Tensor:
        return math.zeros(self.shape & dual(corners=0))

Ancestors

  • phi.geom._geom.Geometry

Static methods

def radius_from_volume(volume: Union[phiml.math._tensors.Tensor, float], spatial_rank: int)
def volume_from_radius(radius: Union[phiml.math._tensors.Tensor, float], spatial_rank: int)

Instance variables

prop boundary_elements : Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
    return {}
prop boundary_faces : Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[str, Tuple[Dict[str, slice], Dict[str, slice]]]:
    return {}
prop center

Center location in single channel dimension.

Expand source code
@property
def center(self):
    return self._center
prop corners : phiml.math._tensors.Tensor

Returns

Corner locations as phiml.math.Tensor. Corners belonging to one object or cell are listed along dual dimensions. If the object has no corners, a size-0 tensor with the correct vector and instance dims is returned.

Expand source code
@property
def corners(self) -> Tensor:
    return math.zeros(self.shape & dual(corners=0))
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    return math.zeros(self.face_shape)
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    return math.zeros(self.shape & dual(shell=0))
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    return math.zeros(self.shape & dual(shell=0))
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return self.shape.without('vector') & dual(shell=0)
prop facesGeometry
Expand source code
@property
def faces(self) -> 'Geometry':
    raise NotImplementedError(f"Sphere.faces not implemented.")
prop radius
Expand source code
@property
def radius(self):
    return self._radius
prop shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self):
    if self._center is None or self._radius is None:
        return None
    return self._center.shape & self._radius.shape
prop volume : phiml.math._tensors.Tensor

phi.math.Tensor representing the volume of each element. The result retains batch, spatial and instance dimensions.

Expand source code
@property
def volume(self) -> math.Tensor:
    return Sphere.volume_from_radius(self._radius, self.spatial_rank)

Methods

def approximate_closest_surface(self, location: phiml.math._tensors.Tensor) ‑> Tuple[phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor, phiml.math._tensors.Tensor]

Find the closest surface face of this geometry given a point that can be outside or inside the geometry.

Args

location
Tensor with a single channel dimension called vector. Can have arbitrary other dimensions.

Returns

signed_distance
Scalar signed distance from location to the closest point on the surface. Positive values indicate the point lies outside the geometry, negative values indicate the point lies inside the geometry.
delta
Vector-valued distance vector from location to the closest point on the surface.
normal
Closest surface normal vector.
offset
Min distance of a surface-tangential plane from 0 as a scalar.
face_index
(Optional) An index vector pointing at the closest face.
def approximate_signed_distance(self, location: Union[phiml.math._tensors.Tensor, tuple])

Computes the exact distance from location to the closest point on the sphere. Very close to the sphere center, the distance takes a constant value.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

float tensor of shape (*location.shape[:-1], 1).

def at(self, center: phiml.math._tensors.Tensor) ‑> phi.geom._geom.Geometry

Returns a copy of this Geometry with the center at center. This is equal to calling self @ center.

See Also: Geometry.shifted().

Args

center
New center as Tensor.

Returns

Geometry.

def bounding_half_extent(self)

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def bounding_radius(self)

Returns the radius of a Sphere object that fully encloses this geometry. The sphere is centered at the center of this geometry.

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def lies_inside(self, location)

Tests whether the given location lies inside or outside of the geometry. Locations on the surface count as inside.

When dealing with unions or collections of geometries (instance dimensions), a point lies inside the geometry if it lies inside any instance.

Args

location
float tensor of shape (batch_size, …, rank)

Returns

bool tensor of shape (*location.shape[:-1], 1).

def rotated(self, angle)

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def sample_uniform(self, *shape: phiml.math._shape.Shape)

Samples uniformly distributed random points inside this volume.

Args

*shape
How many points to sample per individual geometry.

Returns

Tensor containing all dimensions from Geometry.shape, shape as well as a channel dimension vector matching the dimensionality of this Geometry.

def scaled(self, factor: Union[phiml.math._tensors.Tensor, float]) ‑> phi.geom._geom.Geometry

Scales each individual geometry by factor. The individual center points act as pivots for the operation.

Args

factor: Returns:

class UniformGrid (resolution: phiml.math._shape.Shape = None, bounds: phi.geom._box.BaseBox = None, **resolution_)

An instance of UniformGrid represents all cells of a regular grid as a batch of boxes.

Expand source code
class UniformGrid(BaseBox):
    """
    An instance of UniformGrid represents all cells of a regular grid as a batch of boxes.
    """

    def __init__(self, resolution: Shape = None, bounds: BaseBox = None, **resolution_):
        assert resolution is None or resolution.is_uniform, f"spatial dimensions must form a uniform grid but got {resolution}"
        resolution = (resolution or EMPTY_SHAPE).spatial & spatial(**resolution_)
        bounds = _get_bounds(bounds, resolution)
        assert set(bounds.vector.item_names) == set(resolution.names)
        self._resolution = resolution.only(bounds.vector.item_names, reorder=True)  # reorder only
        self._bounds = bounds
        self._shape = self._resolution & bounds.shape.non_spatial
        staggered_shapes = [self._shape.spatial.with_dim_size(dim, self._shape.get_size(dim) + 1) for dim in self.vector.item_names]
        self._face_shape = shape_stack(dual(vector=self.vector.item_names), *staggered_shapes)

    @property
    def resolution(self):
        return self._resolution

    @property
    def bounds(self):
        return self._bounds

    @property
    def spatial_rank(self) -> int:
        return self._resolution.spatial_rank

    @property
    def center(self):
        local_coords = math.meshgrid(**{dim.name: math.linspace(0.5 / dim.size, 1 - 0.5 / dim.size, dim) for dim in self.resolution})
        points = self.bounds.local_to_global(local_coords)
        return points

    @property
    def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
        return {}

    @property
    def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
        result = {}
        for dim in self.vector.item_names:
            result[dim+'-'] = {'~vector': dim, dim: slice(1)}
            result[dim+'+'] = {'~vector': dim, dim: slice(-1, None)}
        return result

    @property
    def face_centers(self) -> Tensor:
        centers = [self.stagger(dim, True, True).center for dim in self.vector.item_names]
        return stack(centers, dual(vector=self.vector.item_names))

    @property
    def faces(self) -> Geometry:
        slices = [self.stagger(d, True, True) for d in self.resolution.names]
        return stack(slices, dual(vector=self.vector.item_names))

    @property
    def face_normals(self) -> Tensor:
        normals = [vec(**{d: float(d == dim) for d in self.vector.item_names}) for dim in self.vector.item_names]
        return stack(normals, dual(vector=self.vector.item_names))

    @property
    def face_areas(self) -> Tensor:
        areas = [math.prod(self.dx.vector[[d for d in self.vector.item_names if d != dim]], 'vector') for dim in self.vector.item_names]
        return stack(areas, dual(vector=self.vector.item_names))

    @property
    def face_shape(self) -> Shape:
        return self._face_shape

    def interior(self) -> 'Geometry':
        raise GeometryException("Regular grid does not have an interior")

    @property
    def grid_size(self):
        return self._bounds.size

    @property
    def size(self):
        return self.bounds.size / math.wrap(self.resolution.sizes)

    @property
    def dx(self):
        return self.bounds.size / self.resolution

    @property
    def lower(self):
        return self.center - self.half_size

    @property
    def upper(self):
        return self.center + self.half_size

    @property
    def half_size(self):
        return self.bounds.size / self.resolution.sizes / 2

    @property
    def rotation_matrix(self) -> Optional[Tensor]:
        return None

    def __getitem__(self, item):
        item = slicing_dict(self, item)
        resolution = self._resolution.after_gather(item)
        bounds = self._bounds[{d: s for d, s in item.items() if d != 'vector'}]
        if 'vector' in item:
            resolution = resolution.only(item['vector'], reorder=True)
            bounds = bounds.vector[item['vector']]
        bounds = bounds.vector[resolution.name_list]
        dx = self.size
        for dim, selection in item.items():
            if dim in resolution:
                if isinstance(selection, slice):
                    start = selection.start or 0
                    if start < 0:
                        start += self.resolution.get_size(dim)
                    stop = selection.stop or self.resolution.get_size(dim)
                    if stop < 0:
                        stop += self.resolution.get_size(dim)
                    assert selection.step is None or selection.step == 1
                else:  # int slices are not contained in resolution anymore
                    raise ValueError(f"Illegal selection: {item}")
                dim_mask = math.wrap(self.resolution.mask(dim))
                lower = bounds.lower + start * dim_mask * dx
                upper = bounds.upper + (stop - self.resolution.get_size(dim)) * dim_mask * dx
                bounds = Box(lower, upper)
        return UniformGrid(resolution, bounds)

    def __pack_dims__(self, dims: Tuple[str, ...], packed_dim: Shape, pos: Optional[int], **kwargs) -> 'Cuboid':
        return math.pack_dims(self.center_representation(size_variable=False), dims, packed_dim, pos, **kwargs)

    @staticmethod
    def __stack__(values: tuple, dim: Shape, **kwargs) -> 'Geometry':
        from ._geom_ops import GeometryStack
        set_op = kwargs.get('set_op')
        return GeometryStack(math.layout(values, dim), set_op)

    def __replace_dims__(self, dims: Tuple[str, ...], new_dims: Shape, **kwargs) -> 'UniformGrid':
        resolution = math.rename_dims(self._resolution, dims, new_dims).spatial
        bounds = math.rename_dims(self._bounds, dims, new_dims, **kwargs)[resolution.name_list]
        return UniformGrid(resolution, bounds)

    def list_cells(self, dim_name):
        center = math.pack_dims(self.center, self._shape.spatial.names, dim_name)
        return Cuboid(center, self.half_size, size_variable=False)

    def stagger(self, dim: str, lower: bool, upper: bool):
        dim_mask = np.array(self.resolution.mask(dim))
        unit = self.bounds.size / self.resolution * dim_mask
        bounds = Box(self.bounds.lower + unit * (-0.5 if lower else 0.5), self.bounds.upper + unit * (0.5 if upper else -0.5))
        ext_res = self.resolution.sizes + dim_mask * (int(lower) + int(upper) - 1)
        return UniformGrid(self.resolution.with_sizes(ext_res), bounds)

    def staggered_cells(self, boundaries: Extrapolation) -> Dict[str, 'UniformGrid']:
        grids = {}
        for dim in self.vector.item_names:
            grids[dim] = self.stagger(dim, *boundaries.valid_outer_faces(dim))
        return grids

    def padded(self, widths: dict):
        resolution, bounds = self.resolution, self.bounds
        for dim, (lower, upper) in widths.items():
            masked_dx = self.dx * math.dim_mask(self.resolution, dim)
            resolution = resolution.with_dim_size(dim, self.resolution.get_size(dim) + lower + upper)
            bounds = Box(bounds.lower - masked_dx * lower, bounds.upper + masked_dx * upper)
        return UniformGrid(resolution, bounds)

    @property
    def shape(self):
        return self._shape

    def shifted(self, delta: Tensor, **delta_by_dim) -> BaseBox:
        # delta += math.padded_stack()
        if delta.shape.spatial_rank == 0:
            return UniformGrid(self.resolution, self.bounds.shifted(delta))
        else:
            center = self.center + delta
            return Cuboid(center, self.half_size, size_variable=False)

    def rotated(self, angle) -> Geometry:
        raise NotImplementedError("Grids cannot be rotated. Use center_representation() to convert it to Cuboids first.")

    def shallow_equals(self, other):
        return self == other

    def __repr__(self):
        return f"{self._resolution}, bounds={self._bounds}"

    def __variable_attrs__(self):
        return ()

    def __value_attrs__(self):
        return ()

    def __eq__(self, other):
        if not isinstance(other, UniformGrid):
            return False
        return self._resolution == other._resolution and self._bounds == other._bounds

    def __hash__(self):
        return hash(self._resolution) + hash(self._bounds)

    @property
    def _center(self):
        return self.center

    @property
    def _half_size(self):
        return self.half_size

    @property
    def normal(self) -> Tensor:
        raise GeometryException("UniformGrid does not have normals")

    def bounding_half_extent(self) -> Tensor:
        return self.half_size

Ancestors

  • phi.geom._box.BaseBox
  • phi.geom._geom.Geometry

Instance variables

prop boundary_elements : Dict[Any, Dict[str, slice]]

Slices on the primal dimensions to mark boundary elements. Grids and meshes have no boundary elements and return {}. Dynamic graphs can define boundary elements for obstacles and walls.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_elements(self) -> Dict[Any, Dict[str, slice]]:
    return {}
prop boundary_faces : Dict[Any, Dict[str, slice]]

Slices on the dual dimensions to mark boundary faces.

Regular grids use the keys (dim, is_upper) to identify boundaries. Unstructured meshes use string identifiers for the boundaries. Dynamic graphs return slices along the dual dimensions.

Returns

Map from name to slicing dict.

Expand source code
@property
def boundary_faces(self) -> Dict[Any, Dict[str, slice]]:
    result = {}
    for dim in self.vector.item_names:
        result[dim+'-'] = {'~vector': dim, dim: slice(1)}
        result[dim+'+'] = {'~vector': dim, dim: slice(-1, None)}
    return result
prop bounds
Expand source code
@property
def bounds(self):
    return self._bounds
prop center

Center location in single channel dimension.

Expand source code
@property
def center(self):
    local_coords = math.meshgrid(**{dim.name: math.linspace(0.5 / dim.size, 1 - 0.5 / dim.size, dim) for dim in self.resolution})
    points = self.bounds.local_to_global(local_coords)
    return points
prop dx
Expand source code
@property
def dx(self):
    return self.bounds.size / self.resolution
prop face_areas : phiml.math._tensors.Tensor

Area of face connecting a pair of cells. Shape (elements, ~). Returns 0 for unconnected cells.

Expand source code
@property
def face_areas(self) -> Tensor:
    areas = [math.prod(self.dx.vector[[d for d in self.vector.item_names if d != dim]], 'vector') for dim in self.vector.item_names]
    return stack(areas, dual(vector=self.vector.item_names))
prop face_centers : phiml.math._tensors.Tensor

Center of face connecting a pair of cells. Shape (elements, ~, vector). Here, ~ represents arbitrary internal dual dimensions, such as ~staggered_direction or ~elements. Returns 0-vectors for unconnected cells.

Expand source code
@property
def face_centers(self) -> Tensor:
    centers = [self.stagger(dim, True, True).center for dim in self.vector.item_names]
    return stack(centers, dual(vector=self.vector.item_names))
prop face_normals : phiml.math._tensors.Tensor

Normal vectors of cell faces, including boundary faces. Shape (elements, ~, vector). For meshes, The vectors point out of the primal cells and into the dual cells.

Instance/spatial dimensions along which the normal does not vary may not be included in the result tensor's shape.

Expand source code
@property
def face_normals(self) -> Tensor:
    normals = [vec(**{d: float(d == dim) for d in self.vector.item_names}) for dim in self.vector.item_names]
    return stack(normals, dual(vector=self.vector.item_names))
prop face_shape : phiml.math._shape.Shape

Returns

Full Shape to identify each face of this Geometry, including instance/spatial dimensions for the elements and dual dimensions listing the faces per element. If this Geometry has no faces, returns an empty Shape.

Expand source code
@property
def face_shape(self) -> Shape:
    return self._face_shape
prop faces : phi.geom._geom.Geometry
Expand source code
@property
def faces(self) -> Geometry:
    slices = [self.stagger(d, True, True) for d in self.resolution.names]
    return stack(slices, dual(vector=self.vector.item_names))
prop grid_size
Expand source code
@property
def grid_size(self):
    return self._bounds.size
prop half_size
Expand source code
@property
def half_size(self):
    return self.bounds.size / self.resolution.sizes / 2
prop lower
Expand source code
@property
def lower(self):
    return self.center - self.half_size
prop normal : phiml.math._tensors.Tensor
Expand source code
@property
def normal(self) -> Tensor:
    raise GeometryException("UniformGrid does not have normals")
prop resolution
Expand source code
@property
def resolution(self):
    return self._resolution
prop rotation_matrix : Optional[phiml.math._tensors.Tensor]
Expand source code
@property
def rotation_matrix(self) -> Optional[Tensor]:
    return None
prop shape

The shape of a Geometry consists of the following dimensions:

  • A single channel dimension called 'vector' specifying the physical space
  • Instance dimensions denote that this geometry consists of multiple copies in the same space
  • Spatial dimensions denote a crystal (repeating structure) of this geometric primitive in space
  • Batch dimensions indicate non-interacting versions of this geometry for parallelization only.
Expand source code
@property
def shape(self):
    return self._shape
prop size
Expand source code
@property
def size(self):
    return self.bounds.size / math.wrap(self.resolution.sizes)
prop spatial_rank : int

Number of spatial dimensions of the geometry, 1 = 1D, 2 = 2D, 3 = 3D, etc.

Expand source code
@property
def spatial_rank(self) -> int:
    return self._resolution.spatial_rank
prop upper
Expand source code
@property
def upper(self):
    return self.center + self.half_size

Methods

def bounding_half_extent(self) ‑> phiml.math._tensors.Tensor

The bounding half-extent sets a limit on the outer-most point for each coordinate axis. Each component is non-negative.

Let the bounding half-extent have value e in dimension d (extent[...,d] = e). Then, no point of the geometry lies further away from its center point than e along d (in both axis directions).

If this geometry consists of multiple parts listed along instance/spatial dims, these dims are retained, giving the bounds of each part. If these dims are not present on the result, all parts are assumed to have the same bounds.

def interior(self) ‑> phi.geom._geom.Geometry
def list_cells(self, dim_name)
def padded(self, widths: dict)
def rotated(self, angle) ‑> phi.geom._geom.Geometry

Returns a rotated version of this geometry. The geometry is rotated about its center point.

Args

angle

Delta rotation. Either

  • Angle(s): scalar angle in 2d or euler angles along vector in 3D or higher.
  • Matrix: d⨯d rotation matrix

Returns

Rotated Geometry

def shallow_equals(self, other)

Quick equality check. May return False even if other == self. However, if True is returned, the geometries are guaranteed to be equal.

The shallow_equals() check does not compare all tensor elements but merely checks whether the same tensors are referenced.

def shifted(self, delta: phiml.math._tensors.Tensor, **delta_by_dim) ‑> phi.geom._box.BaseBox

Returns a translated version of this geometry.

See Also: Geometry.at().

Args

delta
direction vector
delta
Tensor:

Returns

Geometry
shifted geometry
def stagger(self, dim: str, lower: bool, upper: bool)
def staggered_cells(self, boundaries: phiml.math.extrapolation.Extrapolation) ‑> Dict[str, phi.geom._grid.UniformGrid]