4.4. Length Model
The length_model
module contains classes for rescaling the magnitude of the final gradient vector.
The ProjectionLength
class is the default length model for the ConFIG algorithm. You can create a custom length model by inheriting from the LengthModel
class.
Length Model¤
conflictfree.length_model.ProjectionLength
¤
Bases: LengthModel
Rescale the length of the target vector based on the projection of the gradients on the target vector:
Source code in conflictfree/length_model.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
80 81 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|
conflictfree.length_model.TrackMinimum
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the same length as the minimum gradient before projection, i.e., the minimum gradient will be the same length as the target vector.
Source code in conflictfree/length_model.py
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
171 172 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
174 175 |
|
conflictfree.length_model.TrackMaximum
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the same length as the maximum gradient before projection, i.e., the maximum gradient will be the same length as the target vector.
Source code in conflictfree/length_model.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
188 189 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
191 192 |
|
conflictfree.length_model.TrackHarmonicAverage
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the harmonic average of the lengths of all gradients before projection, i.e., the minimum gradient will be the same length as the target vector.
where
The harmonic average can be used to avoid the influence of the large gradients.
Source code in conflictfree/length_model.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
213 214 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
216 217 |
|
conflictfree.length_model.TrackArithmeticAverage
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the arithmetic average of the lengths of all gradients before projection, i.e., the minimum gradient will be the same length as the target vector.
where
Source code in conflictfree/length_model.py
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
236 237 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
239 240 |
|
conflictfree.length_model.TrackGeometricAverage
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the geometric average of the lengths of all gradients before projection, i.e., the minimum gradient will be the same length as the target vector.
where
The geometric average can be used to avoid the influence of the large gradients.
Source code in conflictfree/length_model.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__()
Source code in conflictfree/length_model.py
261 262 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
264 265 |
|
conflictfree.length_model.TrackSpecific
¤
Bases: _FlexibleTrackProjectionLength
Rescale the length of the target vector based on the projection of the gradients on the target vector. All the gradients will be rescaled to the same length as the specific gradient before projection. E.g., if the track_id is 2, then all the gradients will be rescaled to the same length as the third gradient before projection.
Source code in conflictfree/length_model.py
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector.
One of the |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector.
One of the |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. Not used in this model. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
__init__
¤
__init__(track_id: int)
Source code in conflictfree/length_model.py
280 281 282 |
|
_tracked_value
¤
_tracked_value(grad_norms: Tensor) -> Tensor
Source code in conflictfree/length_model.py
284 285 |
|
Base Class of Length Model¤
conflictfree.length_model.LengthModel
¤
The base class for length model.
Methods:
Name | Description |
---|---|
get_length |
Calculates the length based on the given parameters. |
rescale_length |
Rescales the length of the target vector based on the given parameters. |
Source code in conflictfree/length_model.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|
get_length
¤
get_length(
target_vector: Optional[Tensor] = None,
unit_target_vector: Optional[Tensor] = None,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> Union[torch.Tensor, float]
Calculates the length based on the given parameters. Not all parameters are required.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Optional[Tensor]
|
The final update gradient vector. |
None
|
unit_target_vector
|
Optional[Tensor]
|
The unit vector of the target vector. |
None
|
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Union[Tensor, float]
|
Union[torch.Tensor, float]: The calculated length. |
Source code in conflictfree/length_model.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
|
rescale_length
¤
rescale_length(
target_vector: Tensor,
gradients: Optional[Tensor] = None,
losses: Optional[Sequence] = None,
) -> torch.Tensor
Rescales the length of the target vector based on the given parameters. It calls the get_length method to calculate the length and then rescales the target vector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_vector
|
Tensor
|
The final update gradient vector. |
required |
gradients
|
Optional[Tensor]
|
The loss-specific gradients matrix. The shape of this tensor should be (m,N) where m is the number of gradients and N is the number of elements of each gradients. |
None
|
losses
|
Optional[Sequence]
|
The losses. |
None
|
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor: The rescaled target vector. |
Source code in conflictfree/length_model.py
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
|